• 제목/요약/키워드: 인터넷 기반 학습

검색결과 939건 처리시간 0.027초

WBI에서 XML 전자 서명을 이용한 다중 인증 시스템 설계 및 구현 (Design and Implementation of Multiplex Certification System Using XML Signature For WBI)

  • 엄기원;김정재;전문석
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권3호
    • /
    • pp.457-464
    • /
    • 2005
  • 정보통신 기술의 비약적인 발전으로 인해 인터넷은 필수 불가결한 도구가 되고 있다. 이러한 정보화 시대의 요구에 대한 교육적 대응은 학습자중심의 교육이며, 정보통신 기술을 기반으로 한 원격 교육이다. 그와 더불어 차세대 웹 표준문서 포맷으로 부상되고 있는 XML(eXtensible Markup Language)을 사용한 규격에 대한 국내외적인 표준화 작업 또한 가속화되고 있으며, 최근 XML 보안에 대한 연구가 활성화되고 있다. 하지만 2004년부터 사용자들은 CA를 통해 인증을 받으려고 하면 인증서비스에 대한 지불을 해야 하는 단점이 있다. 본 논문에서는 기존의 원격교육 사이트에 다중인증 기법을 적용하여 가입시에 공인인증서를 한번 받도록 하며, 본 시스템에서 제안하는 XML 전자서명을 발급받아 보안성을 유지할 수 있는 방법을 제안하고 이에 대한 시스템 구현을 통해 해결하고자 한다.

  • PDF

An Improved Recommendation Algorithm Based on Two-layer Attention Mechanism

  • Kim, Hye-jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권10호
    • /
    • pp.185-198
    • /
    • 2021
  • 인터넷 기술의 발달로 기존의 추천 알고리즘은 사용자나 항목의 심층적인 특성을 학습할 수 없기 때문에 본 논문은 이 문제를 해결하기 위해 AMITI(주의 메커니즘 및 개선된 TF-IDF)에 기반한 추천 알고리즘을 제안했다. CNN(Convolutional Neural Network)에 2중 주의 메커니즘을 도입함으로써 CNN의 특징 추출 능력이 향상되고, 항목 특징에 다른 선호도 가중치가 할당되며, 사용자 선호도와 더 일치하는 권고사항이 달성되었다. 대상 사용자에게 항목을 추천할 때 점수 데이터와 항목 유형 데이터를 TF-IDF와 결합하여 권장 결과의 그룹화를 완료하였다. 본 논문에서 진행한 MovieLens-1M 데이터 세트에 대한 실험 결과는, AMITI 알고리즘이 권장 사항의 정확도를 향상시키고 프레젠테이션 방법의 순서와 선택성을 향상시킨다는 것을 보여준다.

정상 사용자로 위장한 웹 공격 탐지 목적의 사용자 행위 분석 기법 (User Behavior Based Web Attack Detection in the Face of Camouflage)

  • 신민식;권태경
    • 정보보호학회논문지
    • /
    • 제31권3호
    • /
    • pp.365-371
    • /
    • 2021
  • 인터넷 사용자의 급증으로 웹 어플리케이션은 해커의 주요 공격대상이 되고 있다. 웹 공격을 막기 위한 기존의 WAF(Web Application Firewall)는 공격자의 전반적인 행위보다는 HTTP 요청 패킷 하나하나를 탐지 대상으로 하고 있으며, 새로운 유형의 공격에 대해서는 탐지하기 어려운 것으로 알려져 있다. 본 연구에서는 알려지지 않은 패턴의 공격을 탐지하기 위해 기계학습을 활용한 사용자 행위 기반의 웹 공격 탐지 기법을 제안한다. 공격자가 정상적인 사용자인 것처럼 위장할 수 있는 부분을 제외한 영역에 집중하여 사용자 행위 정보를 정의였으며, 벤치마크 데이터셋인 CSIC 2010을 활용하여 웹 공격 탐지 실험을 수행하였다. 실험결과 Decision Forest 알고리즘에서 약 99%의 정확도를 얻었고, 동일한 데이터셋을 활용한 기존 연구와 비교하여 본 논문의 효율성을 증명하였다.

멀티미디어 수화 콘텐츠의 Semantic Logic 플랫폼 연구 (A Study on Semantic Logic Platform of multimedia Sign Language Content)

  • 정회준;박대우;한경돈
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.199-206
    • /
    • 2009
  • 초고속 인터넷의 발달로 멀티미디어 수화 콘텐츠가 청각장애인의 수화교육에 활용되고 있다. 수화교육에서 사용되는 대부분 콘텐츠는 한글단어에 대한 수화표현을 수화동영상으로 보여주는 내용이다. 수화를 처음 배우거나, 수화에 익숙하지 않은 사용자들은 수화특성을 이해하기 어렵고, 수화표현에 어려움을 나타내고 있다. 본 논문에서는 온라인에서 수화표현을 학습하기 위해서 수화가 가지고 있는 특성을 참고하고, Semantic Logic을 적용한 멀티미디어 동영상기반의 수화 콘텐츠 모형에 대한 플랫폼 설계를 연구하고자 한다.

연합 학습기반 수중 사물 인터넷 (Federated Learning-Internet of Underwater Things)

  • 신하 쉬르티카;고굴라무디 프라딥레디;박수현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.140-142
    • /
    • 2023
  • Federated learning (FL) is a new paradigm in machine learning (ML) that enables multiple devices to collaboratively train a shared ML model without sharing their local data. FL is well-suited for applications where data is sensitive or difficult to transmit in large volumes, or where collaborative learning is required. The Internet of Underwater Things (IoUT) is a network of underwater devices that collect and exchange data. This data can be used for a variety of applications, such as monitoring water quality, detecting marine life, and tracking underwater vehicles. However, the harsh underwater environment makes it difficult to collect and transmit data in large volumes. FL can address these challenges by enabling devices to train a shared ML model without having to transmit their data to a central server. This can help to protect the privacy of the data and improve the efficiency of training. In this view, this paper provides a brief overview of Fed-IoUT, highlighting its various applications, challenges, and opportunities.

인도네시아 찌상쿠이강 유역의 지능형 물관리 시스템 적용 연구 (Study for implementation of smart water management system on Cisangkuy river basin in Indonesia)

  • 김유진;고익환;김태원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.469-469
    • /
    • 2017
  • 기후 변화 및 환경오염으로 인하여 물부족 국가가 세계적으로 증가하고 있는 추세이며, 특히 집중형 강우의 형태가 많아짐에 따라 홍수피해 및 상수공급의 문제가 사회적으로 큰 이슈가 되고 있다. 최근 20여 년간의 급속한 경제성장과 도시화 과정에서 인도네시아는 인구와 산업의 과도한 도시집중으로 지난 1960-80년대 한국이 산업화 과정에서 겪었던 것보다 훨씬 심각한 환경문제에 직면하고 있으며, 자카르타와 반둥을 포함하는 광역 수도권 지역의 물 부족과 수질 오염, 환경문제가 이미 매우 위험한 수준에 도달하고 있는 실정이다. 특히, 찌따룸강 중상류에 위치한 인도네시아 3대 도시인 반둥시는 고질적인 용수부족 문제를 겪고 있다. 2010년 현재 약 일평균 15 CMS의 용수가 부족한 상황이며, 2030년에는 지속적인 인구증가로 약 23 CMS의 용수가 추가로 더 필요한 것으로 전망된다. 이러한 용수공급 문제 해결을 위해 반둥시 및 찌따룸강 유역관리청은 댐 및 지하수 개발, 유역 간 물이동 등의 구조적인 대책뿐만 아니라 비구조적인 대책으로써 기존 및 신규 저수지 연계운영을 통한 용수이용의 효율성을 높이는 방안을 모색하고 있다. 이에 따라 본 연구에서는 해당유역의 용수공급 부족 문제를 해소할 수 있는 비구조적인 대책의 일환으로써 다양한 댐 및 보, 소수력 발전, 취수장 등 유역 내 수리 시설물의 운영 최적화를 위한 지능형 물관리 시스템 적용 방안을 제시하고자 한다. 본 연구의 지능형 물관리 시스템은 센서 및 사물 인터넷(Internet of Things, IoT), 네트워크 기술을 바탕으로 시설물 및 운영자, 유관기관 간의 양방향 통신을 통해 유기적인 상호연계 체계를 제공 할 수 있다. 또한 유역의 수문상황과 시설물의 운영현황, 용수공급 및 수요 현황을 실시간으로 확인함으로써 수요에 따른 즉각적인 용수공급량의 조절이 가능하다. 또한, 빅데이터 분석 및 기계학습(Machine Learning)을 통해 개별 물관리 시설물에 대한 최적 운영룰을 업데이트할 수 있으며, 유역의 수문상황과 용수 수요 현황을 고려하여 최적의 용수공급 우선순위를 선정할 수 있다. 지능형 물관리 시스템 개발의 목적은 찌상쿠이 유역의 수문현황을 실시간으로 모니터링하고, 하천시설물의 운영을 분석하여 최적의 용수공급 및 배분을 통해 유역의 수자원 활용 효율성을 향상시키는 데 있다. 이를 위해 수문자료의 수집체계를 구축하고 기관간 정보공유체계를 수립함으로써 분석을 위한 기반 인프라를 구성하며, 이를 기반으로 유역 유출을 비롯한 저수지 운영, 물수지 분석을 수행하고, 분석 및 예측결과, 과거 운영 자료를 토대로 새로운 물관리 시설 운영룰 및 시설물 간 연계운영 방안, 용수공급 우선순위 의사결정 등을 지원하고자 한다. 본 연구의 지능형 물관리 시스템은 통합 DB를 기반으로 수리수문 현상의 모의 분석을 통해 하천 시설물 운영의 합리적 기준을 제시함으로써 다양한 관리주체들의 시설물운영에 대한 이견 및 분쟁을 해소하고, 한정된 수자원과 다양한 수요 간의 효율적이고 합리적인 분배 및 시설물 운영문제를 해결하기 위한 의사결정도구로써 활용할 수 있을 것으로 기대된다.

  • PDF

고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석 (Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification)

  • 이성주;이효찬;송현학;전호석;임태호
    • 인터넷정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.59-68
    • /
    • 2021
  • 최근 급속도로 성장하고 있는 인공지능 기술이 자율운항선박과 같은 해상 환경에서도 적용되기 시작하면서 디지털 영상에 특화된 CNN 기반의 모델을 적용하는 관련 연구가 활발히 진행되고 있다. 이러한 해상 서비스의 경우 인적 과실을 줄이기 위해 충돌 위험이 있는 부유물을 감지하거나 선박 내부의 화재 등 여러 가지 기술이 접목되기에 실시간 처리가 매우 중요하다. 그러나 기능이 추가될수록 프로세서의 제품 가격이 증가하는 문제가 존재해 소형 선박의 선주들에게는 비용적인 측면에서 부담이 된다. 또한 대형 선박의 경우 자율운항선박의 시스템을 감안할 때, 연산 속도의 성능 향상을 위해 복잡도가 높은 딥러닝 모델의 성능을 개선하는 방법이 필요하다. 따라서 본 논문에서는 딥러닝 모델에 경량화 기법을 적용해 정확도를 유지하면서 고속으로 처리할 수 있는 방법에 대해 제안한다. 먼저 해상 부유물 검출에 적합한 영상 전처리를 진행하여 효율적으로 CNN 기반 신경망 모델 입력에 영상 데이터가 전달될 수 있도록 하였다. 또한, 신경망 모델의 알고리즘 경량화 기법 중 하나인 학습 후 파라미터 양자화 기법을 적용하여 모델의 메모리 용량을 줄이면서 추론 부분의 처리 속도를 증가시켰다. 양자화 기법이 적용된 모델을 저전력 임베디드 보드에 적용시켜 정확도와 처리 속도를 사용하는 임베디드 성능을 고려하여 설계하는 방법을 제안한다. 제안하는 방법 중 정확도 손실이 제일 최소화되는 모델을 활용해 저전력 임베디드 보드에 비교하여 기존보다 최대 4~5배 처리 속도를 개선할 수 있었다.

밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법 (Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band)

  • 최준혁;김문석
    • 인터넷정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.13-20
    • /
    • 2022
  • 차세대 와이파이 표준기술인 IEEE 802.11ay는 밀리미터파 대역에서 AP (Access Point)가 다수의 STA (Station)로 동시에 데이터를 전송하도록 MU-MIMO (Multiple User Multiple Input Multiple Output) 통신을 지원한다. 이를 위해, 주기적으로 MU-MIMO 빔포밍 훈련을 수행해야 하고, 효율적인 빔포밍 훈련을 위해서는 AP가 다수의 안테나로 다수의 빔을 동시에 전송할 때, 각 STA에서 측정되는 신호 세기를 정확히 예측하는 것이 중요하다. 본 논문에서는 딥러닝 기반 다중 빔 전송링크 성능 예측기법을 제안한다. 제안한 예측기법은 특정 실내 또는 실외 환경에서 미리 학습된 딥러닝 모델을 이용하여 다수의 빔이 동시에 전송될 때 STA에서 측정되는 신호 세기 예측의 정확성을 높인다. 이때, 딥러닝의 입력으로 개별 빔이 전송될 때 STA에서 측정되는 신호 세기 정보를 이용하고, 개별 빔의 신호 세기 정보를 얻는 과정은 이미 기존의 빔포밍 훈련에 포함되어 있으므로 정보 수집을 위해 추가적인 비용을 발생하지 않는다. 성능평가를 위해 NIST (National Institute of Standards and Technology)에 의해 개발된 Q-D 채널구현 (Quasi-Deterministic Channel Realization) 오픈소스 소프트웨어를 활용하였고 실측 데이터 기반으로 밀리미터파 채널을 구현하였다. 실험결과에서는 제안한 예측기법이 다른 비교기법보다 향상된 예측성능을 보였다.

무선단말기 RF-fingerprinting 특징의 비지도 클러스터링을 위한 차원축소 알고리즘 연구 (Study on Dimension Reduction algorithm for unsupervised clustering of the DMR's RF-fingerprinting features)

  • 정영규;신학철;나선필
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권3호
    • /
    • pp.83-89
    • /
    • 2023
  • RF-fingerprint를 이용한 클러스터링 기술은 전송 파형에 포함된 송수신기의 특성(signature)을 추출하고 이들에게 임의의 레이블을 자동으로 할당함으로써, 추후 지도 학습기반에 무선단말기 분류기의 개발을 용이하게 해준다. 동종 무선 단말기 분류를 위한 RF-fingerprint 특징 추출 알고리즘의 출력은 512개 또는 1024개 이상의 고차원 특징이다. 이러한 고차원의 특징을 분류기에는 효과적일 수 있으나 클러스터링 알고리즘의 입력으로는 부적절하다. 이에 본 논문은 다차원의 RF-fingerprinting 특징을 무선단말기의 fingerprinting 특징을 유지하면서 차원을 효과적으로 줄일 수 있는 차원 축소 알고리즘을 제안하고, 축소된 차원을 효과적으로 클러스터링할 수 있는 클러스터링 알고리즘을 제안한다. 제안된 RF-fingerprinting 클러스터링 알고리즘은 다차원 RF-fingerprinting 특징을 KL Divergence 기반에 t-SNE를 이용하여 차원을 축소하고 DPC(Density Peaks Clustering)를 이용하여 클러스터링 수행한다. 무선단말기 클러스터링 알고리즘의 성능 분석은 모토롤라XiR 10대와 윈어텍 N-Series 10대에서 수집한 3000개의 데이터셋을 이용한다. RF-fingerprintining기반 클러스터링 알고리즘의 성능 분석 결과 20개의 클러스터가 형성되었고, Homogeneity, Completeness, V-measure 모두 99.4%의 성능을 보였다.

BERT 기반 자연어처리 모델의 미세 조정을 통한 한국어 리뷰 감성 분석: 입력 시퀀스 길이 최적화 (Fine-tuning BERT-based NLP Models for Sentiment Analysis of Korean Reviews: Optimizing the sequence length)

  • 황성아;박세연;장백철
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.47-56
    • /
    • 2024
  • 본 연구는 BERT 기반 자연어처리 모델들을 미세 조정하여 한국어 리뷰 데이터를 대상으로 감성 분석을 수행하는 방법을 제안한다. 이 과정에서 입력 시퀀스 길이에 변화를 주어 그 성능을 비교 분석함으로써 입력 시퀀스 길이에 따른 최적의 성능을 탐구하고자 한다. 이를 위해 의류 쇼핑 플랫폼 M사에서 수집한 텍스트 리뷰 데이터를 활용한다. 웹 스크래핑을 통해 리뷰 데이터를 수집하고, 데이터 전처리 단계에서는 긍정 및 부정 만족도 점수 라벨을 재조정하여 분석의 정확성을 높였다. 구체적으로, GPT-4 API를 활용하여 리뷰 텍스트의 실제 감성을 반영한 라벨을 재설정하고, 데이터 불균형 문제를 해결하기 위해 6:4 비율로 데이터를 조정하였다. 의류 쇼핑 플랫폼에 존재하는 리뷰들을 평균적으로 약 12 토큰의 길이를 띄었으며, 이에 적합한 최적의 모델을 제공하기 위해 모델링 단계에서는 BERT기반 사전학습 모델 5가지를 활용하여 입력 시퀀스 길이와 메모리 사용량에 집중하여 성능을 비교하였다. 실험 결과, 입력 시퀀스 길이가 64일 때 대체적으로 가장 적절한 성능 및 메모리 사용량을 나타내는 경향을 띄었다. 특히, KcELECTRA 모델이 입력 시퀀스 길이 64에서 가장 최적의 성능 및 메모리 사용량을 보였으며, 이를 통해 한국어 리뷰 데이터의 감성 분석에서 92%이상의 정확도와 신뢰성을 달성할 수 있었다. 더 나아가, BERTopic을 활용하여 새로 입력되는 리뷰 데이터를 카테고리별로 분류하고, 최종 구축한 모델로 각 카테고리에 대한 감성 점수를 추출하는 한국어 리뷰 감성 분석 프로세스를 제공한다.