빅데이터 기술에 대한 관심이 급증함에 따라, 소셜 미디어를 통해 유통되는 방대한 양의 비정형 데이터를 분석하고자 하는 시도가 활발히 이루어지고 있다. 이에 따라서 텍스트 형태의 비정형 데이터 분석을 통해 의미 있는 정보를 찾고자 하는 시도가 비즈니스 영역뿐 아니라, 정치, 경제, 문화 등 다양한 영역에서 이루어지고 있다. 특히 최근에는 여러 현안 및 이슈들을 발굴하여 이를 의사결정에 활용하고자 하는 시도가 활발히 이루어지고 있다. 이처럼 빅데이터 분석을 통해 국가현안이나 이슈를 발굴하고자 하는 시도가 꾸준히 이루어져왔음에도 불구하고, 국가현안 및 이슈로부터 이와 관련된 R&D 문서를 효율적으로 제공하는 방안은 마련되지 않고있다. 이는 사용자들이 인식하는 현안 키워드와 실제 사용되는 R&D 키워드 사이의 이질성이 존재하기 때문이다. 따라서 현안 및 R&D키워드간의 이질성을 극복하기 위한 중간 장치가 필요하며, 이 중간 장치를 통해 각 현안 키워드와 R&D 키워드간에 적절한 대응이 이루어져야 한다. 이를 위해 본 연구에서는 (1) 현안 키워드 추출을 위한 하이브리드 방법론, (2) 현안 대응 R&D 정보 패키징 방법론, 그리고 (3) R&D 관점에서의 연관 현안 네트워크 구축 방법론의 총 세 가지 방법론을 제안한다. 제안하는 방법론은 텍스트 마이닝, 소셜네트워크 분석, 그리고 연관 규칙 마이닝 등의 데이터 분석 기법들을 활용하여 수행하였으며, 그 결과, (1)에 의한 키워드 보강률은 42.8%로 나타났으며, (2)의 경우, 현안 키워드와 R&D 키워드간 다수의 연관 규칙이 나타났다. (3)의 경우는 현재 진행 중에 있으며, 향후 가시적 성과를 낼 수 있을 것으로 예상된다.
인터넷의 발달과 SNS의 등장으로 정보흐름의 방식이 크게 바뀌었다. 이러한 변화에 따라 소셜 미디어가 급부상하고 있으며 소셜 미디어와 비디오 콘텐츠가 융합된 소셜 TV, 소셜 뉴스의 중요성이 강조되고 있다. 이러한 환경 속에서 사용자들은 단순히 콘텐츠를 탐색만 하는 것이 아니라 같은 콘텐츠를 이용하고 있는 친구들이나 지인들과 콘텐츠에 대한 정보나 경험들을 공유하고 더 나아가 새로운 콘텐츠를 만들어내기도 한다. 하지만 기존의 소셜 뉴스에서는 이러한 사용자들의 특성을 반영해 주지 못하고 있다. 특히 이용자들의 참여성만을 고려하고 있어서 서비스간의 차별화가 어렵고 뉴스 콘텐츠에 대한 정보나 경험 공유 시 컨텍스트 공유가 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 뉴스를 내용별로 분할하고 분할된 뉴스에서 추출된 시간 종속적인 메타데이터를 제공하는 프레임워크를 제안한다. 제안하는 프레임워크에서는 스토리 분할 방법을 이용하여 뉴스 대본을 내용별로 분할한다. 또한 뉴스 전체내용을 대표하는 태그, 분할된 뉴스를 나타내는 서브 태그, 분할된 뉴스가 비디오에서 시작하는 위치 즉, 시간 종속적인 메타데이터를 제공한다. 소셜 뉴스 이용자들에게 시간 종속적인 메타데이터를 제공한다면 이용자들은 전체의 뉴스 내용 중에 자신이 원하는 부분만을 탐색 할 수 있으며 이 부분에 대한 견해를 남길 수 있다. 그리고 뉴스의 전달이나 의견 공유 시 메타데이터를 함께 전달함으로써 전달하고자 하는 내용에 바로 접근이 가능하며 프레임워크의 성능은 추출된 서브 태그가 뉴스의 실제 내용을 얼마나 잘 나타내 주느냐에 따라 결정된다. 그리고 서브 태그는 스토리 분할의 정확성과 서브 태그를 추출하는 방법에 따라 다르게 추출된다. 이 점을 고려하여 의미적 유사도 기반의 스토리 분할 방법을 프레임워크에 적용하였고 벤치마크 알고리즘과 성능 비교 실험을 수행하였으며 분할된 뉴스에서 추출된 서브 태그들과 실제 뉴스의 내용을 비교하여 서브 태그들의 정확도를 분석하였다. 결과적으로 의미적 유사도를 고려한 스토리 분할 방법이 더 우수한 성능을 보였으며 추출된 서브 태그들도 컨텍스트와 관련된 단어들이 추출 되었다.
전문의는 일반의(General Practitioner)와는 차별된 전문성을 가지고 증상의 난이도가 높은 환자를 처리하는 능력이 요구되는 진료과목의 필요성을 기반으로 하고 있다. 또한 전문의제도는 국민의료적인 측면에서 임상 각 분야에 있어 단일과목을 전공하는 의사를 양성하여 그들로 하여금 의료 전 과목에 관한 기본적 이론과 실기를 교육받은 일반의사의 능력에서 벗어나는 진료기능을 의료전달체계에서 담당하도록 하여 국민의료의 향상을 기하는 데 있다. 한편, 구강내과는 악안면 통증, 연조직 질환, 법의치과분야, 구강진단분야를 다루는 전문과목으로서 그 전문성이 매우 중요한데, 구강내과학적 측면에서 비추어 볼 때, 현대화 사회로 갈수록 현대인들은 대도시 중심의 생활환경의 변화와 함께 일상적 스트레스가 증가함에 따라 측두하악장애, 구강내 연조직 질환, 삼차신경통과 같은 신경병변 등의 유병율이 증가하고 있으며, 이에 대한 환자들의 의존도가 높아지고 있는 추세이다. 이에 본 연구는 2004년 8월부터 2005년 4월까지 연세대학교 치과대학병원 구강내과 외래에 내원한 초진환자 3,707명을 대상으로 하여, 의뢰율 및 내원경로를 중심으로 분석한 결과 다음과 같은 결론을 얻었다. 1. 구강내과에 의뢰된 전문 진료분야로는 구강안면통증, 구강 연조직 질환, 법의치과분야, 구강진단분야로 나타났다. 2. 구강내과에 의뢰된 환자의 비율은 58.51%로 과반수를 넘는 환자들이 의뢰되었다. 3. 의뢰환자 중 의뢰기관의 영역분석을 시행한 결과, 치과에서 의뢰된 경우가 83.23%로 가장 많았고 의과 및 한의과 영역에서 의뢰된 경우는 16.78%를 보였다. 4. 자의내원한 환자 중 인터넷 및 매스미디어에서 구강내과 전문분야에 대한 사전 검색 및 주변의 권유에 의해 내원한 환자들이 응답자의 30.52%를 차지하였다. 이상의 결과를 종합해 볼 때, 구강내과는 대부분 의뢰된 환자를 진료하고 있으며, 치과영역 뿐 아니라 의과영역에서의 의뢰율이 높은 것으로 보아 치과영역에서는 일반의들이 치료할 수 없는 수준의 진료영역을 담당하고 있는 것으로 볼 수 있으며 의과학 분야에서는 구강내과학적 전문성을 요하는 질환을 구강내과와 협진하에 해결하려는 것으로 사료되어 전문과목으로서 구강내과학의 역할과 비중이 매우 높음을 확인할 수 있었고, 이는 향후 전문치의제도 인력수급 및 이의 기반이 되는 전공의의 정원책정에서 시장적 접근 및 규범적 접근의 기초자료로 활용되어야 할 것이다.
최근 인터넷이 가능한 컴퓨터뿐만 아니라 스마트TV, 스마트폰과 같은 장치를 통한 동영상 형태의 멀티미디어 소비가 증가함에 따라 단순히 시청만 하는 것이 아니라 동영상 콘텐츠 사용자들은 자신이 원하는 동영상 콘텐츠를 찾거나 동영상 콘텐츠에 등장하는 객체의 부가 정보를 브라우징 하고자 하는 요구가 증대되고 있다. 이러한 사용자의 요구를 충족시키기 위해서는 노동집약적인 어노테이션 작업이 불가피하다. 동영상 콘텐츠에 등장하는 객체에 직접 부가정보를 기술하는 키워드 기반 어노테이션 연구에서는 객체에 대한 관련 정보들을 어노테이션 데이터에 모두 포함시켜 대용량 데이터를 개별적으로 직접 관리해야 한다. 이러한 어노테이션 데이터를 이용하여 브라우징을 할 때, 어노테이션 데이터에 이미 포함 되어 있는 정보만 제한적으로 검색이 된다는 단점을 가지고 있다. 또한, 기존의 객체 기반 어노테이션에서는 어노테이션 작업량을 줄이기 위해 객체 검출 및 인식, 트래킹 등의 컴퓨터 비전 기술을 적용한 자동 어노테이션을 시도하고 있다. 그러나 다양한 종류의 객체를 모두 검출해내고 인식하여, 자동으로 어노테이션을 하기에는 현재까지의 기술로는 큰 어려움이 있다. 이러한 문제점들을 극복하고자 본 논문에서는 비디오 어노테이션 모듈과 브라우징 모듈로 구성되는 시스템을 제안한다. 시맨틱 데이터에 접근하기 위해 링크드 데이터를 이용하여 다수의 어노테이션을 수행하는 사용자들이 협업적으로 동영상 콘텐츠에 등장하는 객체에 대한 어노테이션을 수행 할 수 있도록 하는 어노테이션 모듈이다. 첫 번째는 어노테이션 서버에서 관리되는 어노테이션 데이터는 온톨로지 형태로 표현하여 다수의 사용자가 어노테이션 데이터를 쉽게 공유하고 확장 할 수 있도록 하였다. 특히 어노테이션 데이터는 링크드 데이터에 존재하는 객체의 URI와 동영상 콘텐츠에 등장하는 객체를 연결하기만 한다. 즉, 모든 관련 정보를 포함하고 있는 게 아니라 사용자의 요구가 있을 때, 해당 객체의 URI를 이용하여 링크드 데이터로부터 가져온다. 두 번째는 시청자들이 동영상 콘텐츠를 시청하는 중 관심 있는 객체에 대한 정보를 브라우징 하는 모듈이다. 이 모듈은 시청자의 간단한 상호작용을 통해 적절한 질의문을 자동으로 생성하고 관련 정보를 링크드 데이터로 부터 얻어 제공한다. 본 연구를 통해 시맨틱웹 환경에서 사용자의 상호작용을 통해 즉각적으로 관심 있는 객체의 부가적인 정보를 얻을 수 있도록 함으로써 향후 개선된 동영상 콘텐츠 서비스 환경이 구축 될 수 있기를 기대한다.
최근 소셜 미디어의 발달과 스마트폰의 확산으로 SNS(Social Network Service)가 활성화가 되면서 데이터양이 폭발적으로 증가하였다. 이에 맞춰 빅데이터 개념이 새롭게 대두되었으며, 빅데이터를 활용하기 위한 많은 방안이 연구되고 있다. 여러 기업이 보유한 빅데이터의 가치창출을 극대화하기 위해 기존 데이터와의 융합이 필요하며, 물리적, 논리적 저장구조가 다른 이기종 데이터 소스를 통합하고 관리하기 위한 시스템이 필요하다. 빅데이터를 처리하기 위한 시스템인 맵리듀스는 분산처리를 활용하여 빠른게 데이터를 처리한다는 이점이 있으나 모든 키워드에 대해 시스템을 구축하여 저장 및 검색 등의 과정을 거치므로 실시간 처리에 어려움이 따른다. 또한, 이기종 데이터를 처리하는 구조가 없어 복합 이벤트를 처리하는데 추가 비용이 발생할 수 있다. 이를 해결하는 방안으로 기존에 연구된 복합 이벤트 처리 시스템을 활용하여 실시간 복합 이벤트 탐지를 위한 기법을 제안하고자 한다. 복합 이벤트 처리 시스템은 서로 다른 이기종 데이터 소스로부터 각각의 데이터들을 통합하고 이벤트들의 조합이 가능하며 스트림 데이터를 즉시 처리할 수 있어 실시간 처리에 유용하다. 그러나 SNS, 인터넷 기사 등 텍스트 기반의 비정형 데이터를 텍스트형으로 관리하고 있어 빅데이터에 대한 질의가 요청될 때마다 문자열 비교를 해야 하므로 성능저하가 발생할 여지가 있다. 따라서 복합 이벤트 처리 시스템에서 비정형 데이터를 관리하고 질의처리가 가능하도록 문자열의 논리적 스키마를 부여하고 데이터 통합 기능을 제안한다. 그리고 키워드 셋을 이용한 필터링 기능으로 문자열의 키워드를 정수형으로 변환함으로써 반복적인 비교 연산을 줄인다. 또한, 복합 이벤트 처리 시스템을 활용하면 인 메모리(In-memory)에서 실시간 스트림 데이터를 처리함으로써 디스크에 저장하고 불러들이는 시간을 줄여 성능 향상을 가져온다.
최근 인터넷 기반의 분산 멀티미디어 환경에서 가장 성장하는 기술로는 스트림 서비스 기술과 분산 객체 기술을 꼽을 수 있다. 특히, 분산 객체 기술에 스트림 서비스 기술을 통합하려는 연구들이 진행되고 있다. 이 기술들은 다양한 스트림 서비스 관리 모델과 프로토콜의 연구에서 적용되고 있다. 그러나, 기존에 제시된 관리 모델들은 스트림 전송의 서비스 질(QoS)에 대한 지원이 미흡하다. 또한, 서비스 질에 관련된 기능들이 특정 응용 서비스의 부속 모듈로 개발됨에 따라, 확장이나 재사용을 지원할 수 없는 문제점을 나타내고 있다. 이를 해결하기 위해 본 논문에서는 분산 객체 기술을 적용하여 확장 및 재사용이 용이하고 스티림의 서비스의 질을 보장하는 QoS 통합 플랫폼을 제안했다. 제안된 플랫폼의 구조는 사용자 제어 모듈, QoS 관리 모듈 및 스트림 객체의 세가지 컴포넌트로 구성된다. 스트림 객체는 TCP/IP 상에서 RTP 패킷을 송·수신 기능을 한다. 사용자 제어 모듈은 CORBA 객체를 이용하여 스트림 객체들을 제어한다. QoS 관리 모듈은 사용자 제어 모듈간에 서비스 질을 유지하는 관리 기능을 한다. QoS xd합 플랫폼의 구축을 위해 관련 모듈들을 독립적으로 구현하고, 이들이 CORBA 환경에서 플랫폼 독립성, 상호운용성, 이식성을 갖도록 그들간에 인터페이스들을 IDL로 정의하였다. 제안된 플랫폼의 구현을 위해 Solaris 2.5/2.7에 호환되는 OrbixWeb 3.1c, 자바언어와 Java Media Framework API 2.0, Mini-SQL1.0.16 및 관련 이미지 캡쳐보드 및 영상카메라를 사용하였다. 본 플랫폼의 기능검증을 위한 결과로서, 플랫폼 상에서 스트림 서비스가 진행되는 동안, 클라이언트와 서버의 GUI를 통해 위에서 기술한 모듈들의 수행결과와 QoS 제어 과정으로부터 얻어지는 수치적 데이터를 보였다.
이 논문은 한국 종교에 대한 비판적인 견해의 대대적인 표출 현상(안티 종교운동)을 정리하고 유형화한 뒤 그 의미를 분석한 글이다. 이를 위해 먼저 현대의 범세계적인 종교변동부터 살폈다. 세계종교는 지구촌 의식 출현에 영향을 받아왔다. 그 결과 그들은 과거와의 연속성을 유지한 채 여러 종교의 공통 기반 위에서 보편성을 획득하려하고 있다. 그러한 모습은 스스로의 정체성을 계속 유지하려들거나, 전통을 재창조하려하거나 혹은 현대에 맞게 변용시키거나, 혁신적으로 변화를 추구하거나, 민족주의와 결탁하거나 하는 여러 유형으로 중첩되어 나타나곤 한다. 세계종교에서 살필 수 있는 이러한 변동들이 한국 사회에서는 어떻게 관찰되는가? 대체로 현 시대의 한국 종교상황은 개신교에 대한 비판이나 혁신 요구, 소수종교에 대한 공격, 학계와 언론의 종교 개혁요구, 종교무용론 전파, 유튜브 등 인터넷과 멀티미디어를 활용한 종교 비판 등으로 나타나고 있는 것으로 보인다. 이러한 종교 비판은 안티 종교운동으로 읽혀진다. 종교 외적으로는 서구 학자들이 제기하고 있는 종교무용론이나 과학 또는 역사적 관점에서의 종교 비판 이론이 서점을 중심으로 전파되고 있으며, 종교 내적으로는 개신교를 중심으로 자신의 내부를 반성하고 새로운 초종교적 영성을 강조하는 방향으로 흐르고 있다는 것이 그 내용이다. 과거에도 물론 종교 일반과 특정 종교에 대한 비판은 제기되었다. 그러나 최근에 우리나라에서 진행되고 있는 안티 종교운동은 그 내용과 맥락에서 과거와는 다른 양상으로 전개되고 있다. 특히 개신교에 대한 적극적이고 전반적인 비판 운동은 분명 새로운 현상임에 틀림없다. 적어도 개신교가 주요 대상이기는 하지만 현재 우리나라에서 진행되고 있는 안티 종교운동은 앞으로 우리나라의 종교변동을 살필 수 있는 주요 자료가 될 수 있을 것이다.
인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.
최근 다양한 소셜미디어를 통해 생성되는 비정형 데이터의 양은 빠른 속도로 증가하고 있으며, 이를 저장, 가공, 분석하기 위한 도구의 개발도 이에 맞추어 활발하게 이루어지고 있다. 이러한 환경에서 다양한 분석도구를 통해 텍스트 데이터를 분석함으로써, 기존의 정형 데이터 분석을 통해 해결하지 못했던 이슈들을 해결하기 위한 많은 시도가 이루어지고 있다. 특히 트위터나 페이스북을 통해 실시간에 근접하게 생산되는 글들과 수많은 인터넷 사이트에 게시되는 다양한 주제의 글들은, 방대한 양의 텍스트 분석을 통해 많은 사람들의 의견을 추출하고 이를 통해 향후 수익 창출에 기여할 수 있는 새로운 통찰을 발굴하기 위한 움직임에 동기를 부여하고 있다. 뉴스 데이터에 대한 오피니언 마이닝을 통해 주가지수 등락 예측 모델을 제안한 최근의 연구는 이러한 시도의 대표적 예라고 할 수 있다. 우리가 여러 매체를 통해 매일 접하는 뉴스 역시 대표적인 비정형 데이터 중의 하나이다. 이러한 비정형 텍스트 데이터를 분석하는 오피니언 마이닝 또는 감성 분석은 제품, 서비스, 조직, 이슈, 그리고 이들의 여러 속성에 대한 사람들의 의견, 감성, 평가, 태도, 감정 등을 분석하는 일련의 과정을 의미한다. 이러한 오피니언 마이닝을 다루는 많은 연구는, 각 어휘별로 긍정/부정의 극성을 규정해 놓은 감성사전을 사용하며, 한 문장 또는 문서에 나타난 어휘들의 극성 분포에 따라 해당 문장 또는 문서의 극성을 산출하는 방식을 채택한다. 하지만 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다. 본 연구는 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다는 인식에서 출발한다. 동일한 어휘의 극성이 해석하는 사람의 입장에 따라 또는 분석 목적에 따라 서로 상이하게 해석되는 현상은 지금까지 다루어지지 않은 어려운 이슈로 알려져 있다. 구체적으로는 주가지수의 상승이라는 한정된 주제에 대해 각 관련 어휘가 갖는 극성을 판별하여 주가지수 상승 예측을 위한 감성사전을 구축하고, 이를 기반으로 한 뉴스 분석을 통해 주가지수의 상승을 예측한 결과를 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.