• Title/Summary/Keyword: 인체팬텀

Search Result 198, Processing Time 0.028 seconds

Development of Film Verification as the QA of IMRT for Advanced Hepatoma Patients (간암 환자의 세기조절 방사선치료에서 임상적응 가능한 QA 기법의 개발)

  • Kim Myung-Se
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • Hepatoma is one of 3 most common malignancies in Korea, the survival rate is not improved since last decades because of delayed diagnosis and limited treatment conditions. Radiation was one of treatment options but the impact on the survival is not remarkable. High dose exposure to target area was suggested for improved effect but low tolerance dose of normal liver tissue is the main limited factor. IMRT is the advanced form of 3DCRT, for focusing high dose on target with minimal dose to surrounding normal tissues. Motion of the tumor by respiration, cardiac pulsation and peristalsis is the main treatment harrier of IMRT for treatment of hepatoma patients. Development of QA technique for acceptable geometrical uncertainties and dose error on target volume is essential for IMRT in clinical treatment but proper QA technique is not yet developed. This study compared the verification film dosimetry with measured dose in phantom and calculated dose in planning computer on exactly same conditions of patient treatments. Within 3% dose differences between 3 groups were confirmed. We suggest that our verification QA technique is easy, economic, iterative and acceptable in clinical application for advanced hepatoma patients.

  • PDF

Effects of Dose Reduction Fiber Shielding Cloth on Scattering Rays in Off-target Site during Angiography (선량저감섬유(Dose Reduction Fiber) 차폐포의 혈관조영술(Angiography) 시술 시 비 시술 부위의 산란선 차폐 효과)

  • Kim, Yong-Jin;Han, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.393-400
    • /
    • 2020
  • Unlike conventional radiographic examinations, angiointerventional procedures have a high risk of radiation exposure to patients or operators due to prolonged radiation exposure time. This study was undertaken to examine effects of reducing the radiation risk by applying dose reduction fiber (DRF) shielding cloth during angiography. To investigate the properties of DRF shielding cloth, we measured the scattered radiation below and above a human phantom using a glass dosimeter, at site distances 10 cm away from the irradiated field. The results obtained reveal a 15 ~ 31% reduction of scattered radiation in the irradiation field, and 53 ~ 70% reduced radiation measured after phantom transmission. Taken together, our data indicate that application of DRF shielding cloth for radiation reduction at non-procedural sites during interventional procedure results in reduction of scattered doses to patients and operators, without affecting the medical examinations. We propose the use of DRF shielding during angiointerventional procedures, in order to reduce the risk of radiation exposure of patients and operators.

The convergence study on patient position and exposure dose in abdominal CT examination using AEC (AEC를 적용한 복부 CT 검사 시 환자 자세와 피폭선량에 대한 융합 연구)

  • Lee, Chun-Kyu;Oh, Jeong-Sub;Choi, Seon-Wook;Kim, Gab-Jung;Yoo, Se-Jong;Jeon, Min-Cheol
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.107-113
    • /
    • 2018
  • The purpose of this study was to evaluate the dose and image quality according to the rotation of the X-axis direction in the abdominal CT scan, and to find ways to reduce the exposure dose. The phantom was scanned by rotating in the X-axis direction at 0, 5, 10, and 15 degrees, respectively. The CTDIvol value, HU, noise, and signal-to-noise ratio were measured at each rotation. ANOVA analysis was performed using the SPSSWIN (ver 19.0) program. The radiation exposure dose was 5.44mGy, 5.70mGy, 5.98mGy and 6.38mGy at 0, 5, 10 and 15 degrees, respectively. HU, noise, and signal-to-noise ratio were not statistically significant. In the CT scan, if the patient is located in the isocenter of the gantry aperture and there is no rotation in the X-axis direction, the exposure dose is reduced.

Monte Carlo Simulation of Absorbed Energy by Gold Nano-Particles for Proton (양성자에 대한 금 나노입자의 밀도에 따른 흡수 에너지의 몬테카를로 전산모사)

  • Kwon Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Proton therapy is known for its superior treatment method due to Bragg peak. To enhance the therapeutic effects of protons, research has been conducted on distributing gold nanoparticles within tumors to increase the absorbed dose. While previous studies focused on handling gold nanoparticles at micrometer and nonometer scale, this study proposes a method to computationally estimate the effect of gold nanoparticles at the millimeter scale. The Geant4 toolkit was applied to computational modeling. Assuming a uniform distribution of water, similar to the human body, and gold nanoparticles, the concentration of gold nanoparticles was adjusted using density ratios. When the density ratio was 5%, the gain in absorbed energy due to gold nanoparticles was nearly twice that of the pure water phantom at the Bragg peak. As the density ratio increased, the gain in absorbed energy linearly increased. When gold nanoparticles were distributed in only one voxel at the Bragg peak, the energy of the protons affected only the neighboring voxels. However, in cases where gold nanoparticles were distributed over a wide area, the volume showing 95% of the maximum absorbed energy (9.46 keV) for the pure water phantom (9.95 keV) exhibited an improvement in absorbed energy over a region 16 times larger, and this region increased as the density ratio increased. Further research is needed to quantify the relationship between the density ratio of gold nanoparticles and the relative biological effect (RBE) in the millimeter scale.

Projection-type Fast Spin Echo Imaging (프로젝션 타입 고속 스핀 에코 영상)

  • 김휴정;김치영;김상묵;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.42-51
    • /
    • 2000
  • Purpose: Projection-type Fast Spin Echo (PFSE) imaging is robust to patient motion or flow related artifact compared to conventional Fast Spin Echo (FSE) imaging, however, it has difficulty in controlling $T_2$ contrast. In this paper, Tz contrast in the PFSE method is analyzed and compared with those of the FSE method with various effective echo times by computer simulation. The contrasts in the FSE and PFSE methods are also compared by experiments with volunteers. From the analysis and simulation, it is shown that ${T_2}-weighted$ images can well be obtained by the PFSE method proposed. Materials and methods: Pulse sequence for the PFSE method is implemented at a 1.0 Tesla whole body MRI system and $T_2$ contrasts in the PFSE and FSE methods are analyzed by computer simulation and experiment with volunteers. For the simulation, a mathematical phantom composed of various $T_2$ values is devised and $T_2$ contrast in the reconstructed image by the PFSE is compared to those by the FSE method with various effective echo times. Multi-slice ${T_2}-weighted$ head images of the volunteers obtained by the PFSE method are also shown in comparison with those by the FSE method at a 1.0 Tesla whole body MRI system. Results: From the analysis, $T_2$ contrast by the PFSE method appears similar to those by the FSE method with the effective echo time in a range of SO-lOOms. Using a mathematical phantom, contrast in the PFSE image appears close to that by the FSE method with the effective echo time of 96ms. From experiment with volunteers, multi-slice $T_2-weighted$ images are obtained by the PFSE method having contrast similar to that of the FSE method with the effective echo time of 96ms. Reconstructed images by the PFSE method show less motion related artifact compared to those by the FSE method. Conclusion: The projection-type FSE imaging acquires multiple radial lines with different angles in polar coordinate in k space using multiple spin echoes. The PFSE method is robust to patient motion or flow, however, it has difficulty in controlling $T_2$ contrast compared to the FSE method. In this paper, it is shown that the PFSE method provides good $T_2$ contrast (${T_2}-weighted$ images) similar to the FSE method by both computer simulation and experiments with volunteers.

  • PDF

The evaluation of the radiation dose and the image quality during MDCT using Glass Rod Detector (유리선량계를 이용한 복부 MDCT 검사시 피폭선량 및 화질평가)

  • Kim, Chang-Gyu;Park, Byung-Sub
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.249-254
    • /
    • 2012
  • Assessing the exposure dose and the obtained image during the abdominal radiography with 128-slice MDCT scanner and 4-slice MDCT scanner which are recently being used in clinics using the body tissue-equivalent phantom and the glass dosimeter, the results were as follows. During the CT test for the abdomen, the absorbed dose was $35.8{\pm}0.46mGy$ in 4-MDCT, and $19.03{\pm}0.25mGy$ in 128-MDCT, which indicated that the radiation dose necessary to obtain the image meaningful to diagnosis was required less by 128-MDCT(P<0.05). As a result of analyzing the image obtained from the abdominal test using MDCT with a 5-point Likert scale, 4-MDCT showed the result of 3.52 points, and 128-MDCT showed the result of 4.01 points, that is, the image quality of 128-MDCT was evaluated high, and there was a statistically significant difference. In the results above, it is considered that 128 slice MDCT scanner will be much used later as it can reduce the radiation exposure, and make us obtain the high quality of image.

Development of Physical Human Bronchial Tree Models from X-ray CT Images (X선 CT영상으로부터 인체의 기관지 모델의 개발)

  • Won, Chul-Ho;Ro, Chul-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.263-272
    • /
    • 2002
  • In this paper, we investigate the potential for retrieval of morphometric data from three dimensional images of conducting bronchus obtained by X-ray Computerized Tomography (CT) and to explore the potential for the use of rapid prototype machine to produce physical hollow bronchus casts for mathematical modeling and experimental verification of particle deposition models. We segment the bronchus of lung by mathematical morphology method from obtained images by CT. The surface data representing volumetric bronchus data in three dimensions are converted to STL(streolithography) file and three dimensional solid model is created by using input STL file and rapid prototype machine. Two physical hollow cast models are created from the CT images of bronchial tree phantom and living human bronchus. We evaluate the usefulness of the rapid prototype model of bronchial tree by comparing diameters of the cross sectional area bronchus segments of the original CT images and the rapid prototyping-derived models imaged by X-ray CT.

Influences of Mobile Phone Electromagnetic Wave on Human Body According to Holding Method by the Hand and Wearing Accessories (손과 액세서리에 의한 휴대폰 전자파의 인체 노출 특성)

  • Choi Myung-Sun;Jang Young-Ho;Gimm Youn-Myoung;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.652-660
    • /
    • 2005
  • In this paper, we compared the spatial peak SAR values measured with and without holding the hand-held phones to check the present recommended spatial peak SAR. To better understand the analysis of the SAR effect values, SAR is measured with hand phantoms, made and recommended for the use of Bar-type and Folder-type hand-held phones. The measured results have shown that use of the hand considerably reduces the spatial peak SAR value in a head phantom. We compared the spatial peak SAR values measured with and without accessories. To better understand the analysis of the effects of SAR values with accessories, SAR is measured with accessories composed of three kinds of earrings and glasses. The measured results proved in study that the spatial peak SAR value in a head phantom is not affected by the earrings but by the glasses. The glasses considerably increases the spatial peak SAR value in a head phantom while using Bar-type phones, although the effects are modest with Folder-type phones.

Evaluation of Image Quality according to the Use of Attachable X-ray Table Equipped with Heating Device (가열장치를 구비한 부착형 X선 촬영대의 사용에 따른 화질 평가)

  • Song, Jongnam;Kim, Eungkon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.219-225
    • /
    • 2015
  • This study aims to evaluates the image quality of CR and DR that are scanned with the use of the attachable carbon heater X-ray scanner table equipped with heating device by measuring SNR and CNR before and after the attachment of the said table. In the aluminum staircase testing, CR increased SNR and CNR when attached with the table, while DR decreased SNR and CNR. In the human-body model phantom testing, CR increased SNR and CNR only in the low-energy low-dose radiation and the high-energy high-dose radiation, but decreased SNR and CNR under all other conditions. In conclusion, the use of such table can make the patient feel comfortable by removing his or her anxiety, thus helping the testing, but in the actual clinical application thereof, if the thickness and material of the bottom film and the protective film, including the carbon heater, are not considered, it affects the picture quality, thereby requiring continuous research on the use of such table.

Development of Local-Exposure Systems for In Vivo Studies at Mobile-Phone Frequency Bands (이동통신 주파수 대역에서의 동물 실험용 국부 노출 장치 개발)

  • Ko Chea-Ok;Park Min-Young;Doh Hyeon-Jeong;Kim Jeong-Lan;Jung Ki-Bum;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.451-460
    • /
    • 2006
  • We have designed local exposure systems for long-time mice experiments in PCS and cellular frequency band(PCS: 1,762.5 MHz, cellular: 848.5 MHz). The fabricated systems are local exposure systems of carousel type, and 40 mice can be exposed at a time. In order not to give extra stress to the mice ender experiment, the systems were fabricated to meet the environmental conditions such as illumination, ventilation, noise etc. SAR measurement was performed using a temperature probe. Measurements at 3 points in the head of mouse cadaver and solid phantom were made, and it has been confirmed that the measurement results are in good agreement with the simulation results in the real exposure environment. The exposure systems are currently used for long-term mice experiments.