• Title/Summary/Keyword: 인접 심볼 간의 간섭

Search Result 63, Processing Time 0.016 seconds

Analysis of passive time-reversal communication performance in shallow water with underwater sound channel (음향채널이 존재하는 천해에서의 수동 시역전 통신 성능 분석)

  • Choi, Kang-Hoon;Kim, Sunhyo;Choi, Jee Woong;Kim, Hyeonsu;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • A passive time-reversal technique can improve error performance of the underwater communication system by reducing influence of inter-symbol interferences, which is caused by a multipath channel response. The passive time-reversal communication system equipped with numerous receivers generally can obtain superior error performance since larger diversity gain can be obtained as the number of available received signal increased. In this paper, we analyze the optimal number and combination of receivers that can approximately achieve the best error performance when using the limited number of receivers. For this analysis, we use communication data collected during SAVEX15 (Shallow-water Acoustic Variability Experiment 2015) carried out in the south-western part of Jeju Island from May 14 to May 28, 2015. Analysis results show that there are depths of energy concentration due to the channel characteristics in which the underwater sound channel are present, and the passive time-reversal technique using the limited number of the receivers can derive near-optimal communication performance if the receivers for time-reversal processing are located at the depths where energy is concentrated.

Performance analysis of underwater acoustic communication based on beam diversity in deep water (심해에서의 빔 다이버시티를 이용한 수중음향통신 성능 분석)

  • Kim, Donghyeon;Park, Heejin;Kim, J. S.;Park, Joung-Soo;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.678-686
    • /
    • 2019
  • Underwater communication performance is degraded by the influence of Inter-Symbol Interference (ISI) due to multipath. Passive time reversal processing is the most effective technique for mitigating multipath, and the diversity combining method can be used to improve its performance. This paper analyzed communication performance using the beam diversity combining method, which combines signals obtained through the beam steering to various angles. Directions of arrival were estimated through the beam-time migration, which, in turn, was estimated from probe signals received by a vertical line array. The performance was analyzed based on the number and type of combinations among the estimated angles. In this paper, the data obtained from the Biomimetic Long range Acoustic Communications 2018 (BLAC18) experiment, which was conducted in the East sea, ~50 km east of Pohang, in October 2018, were used for the analysis. The output Signal to Noise Ratio (SNR) was used as communication indicators.

DFT-spread OFDM Communication System for the Power Efficiency and Nonlinear Distortion in Underwater Communication (수중통신에서 비선형 왜곡과 전력효율을 위한 DFT-spread OFDM 통신 시스템)

  • Lee, Woo-Min;Ryn, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.777-784
    • /
    • 2010
  • Recently, the necessity of underwater communication and demand for transmitting and receiving various data such as voice or high resolution image data are increasing as well. The performance of underwater acoustic communication system is influenced by characteristics of the underwater communication channels. Especially, ISI(inter symbol interference) occurs because of delay spread according to multi-path and communication performance is degraded. In this paper, we study the OFDM technique to overcome the delay spread in underwater channel and by using CP, we compensate for delay spread. But PAPR which OFDM system has problem is very high. Therefore, we use DFT-spread OFDM method to avoid nonlinear distortion by high PAPR and to improve efficiency of amplifier. DFT-spread OFDM technique obtains high PAPR reduction effect because of each parallel data loads to all subcarrier by DFT spread processing before IFFT. In this paper, we show performance about delay spread through OFDM system and verify method that DFT spread OFDM is more suitable than OFDM for underwater communication. And we analyze performance according to two subcarrier mapping methods(Interleaved, Localized). Through the simulation results, performance of DFT spread OFDM is better about 5~6dB at $10^{-4}$ than OFDM. When compared to BER according to subcarrier mapping, Interleaved method is better about 3.5dB at $10^{-4}$ than Localized method.