DOI QR코드

DOI QR Code

Performance analysis of underwater acoustic communication based on beam diversity in deep water

심해에서의 빔 다이버시티를 이용한 수중음향통신 성능 분석

  • 김동현 (한국해양과학기술원-한국해양대학교 해양과학기술전문대학원) ;
  • 박희진 (한국해양과학기술원-한국해양대학교 해양과학기술전문대학원) ;
  • 김재수 (한국해양대학교 해양공학과) ;
  • 박정수 (국방과학연구소) ;
  • 한주영 (국방과학연구소)
  • Received : 2019.09.10
  • Accepted : 2019.10.15
  • Published : 2019.11.30

Abstract

Underwater communication performance is degraded by the influence of Inter-Symbol Interference (ISI) due to multipath. Passive time reversal processing is the most effective technique for mitigating multipath, and the diversity combining method can be used to improve its performance. This paper analyzed communication performance using the beam diversity combining method, which combines signals obtained through the beam steering to various angles. Directions of arrival were estimated through the beam-time migration, which, in turn, was estimated from probe signals received by a vertical line array. The performance was analyzed based on the number and type of combinations among the estimated angles. In this paper, the data obtained from the Biomimetic Long range Acoustic Communications 2018 (BLAC18) experiment, which was conducted in the East sea, ~50 km east of Pohang, in October 2018, were used for the analysis. The output Signal to Noise Ratio (SNR) was used as communication indicators.

수중에서는 다중 경로로 인한 인접 심볼 간 간섭의 영향으로 통신 성능이 저하되며, 수동형 시역전 처리는 다중 경로를 완화하기 위한 가장 효율적인 기법이다. 수동형 시역전 처리의 성능을 향상시키기 위해 다이버시티 결합기법이 이용되고 있으며, 본 논문에서는 여러 각도로의 빔 조향을 통해 획득한 신호들을 결합하는 빔 다이버시티 결합기법을 이용하여 통신 성능을 분석하였다. 수직 선 배열 센서에 수신된 탐침 신호로부터 추정한 빔-시간 그래프를 통해 음파의 전달 각도들을 추정하였으며, 추정된 각도 중 결합 개수 및 방식에 따른 통신 성능을 분석하였다. 분석을 위해 2018년 10월 포항 동방 해역에서 수행된 Biomimetic Long range Acoustic Communications 2018(BLAC18) 실험 데이터를 활용하였으며, 통신 성능 지표로써 출력 신호 대 잡음비를 이용하였다.

Keywords

References

  1. M. Stojanovic, J. Catipovic, and J. G. Proakis, "Adaptive multichannel combining and equalization for underwater acoustic communications," J. Acoust. Soc. Am. 94, 1621-1631 (1993). https://doi.org/10.1121/1.408135
  2. A. Plaisant, "Long range acoustic communications," Proc. IEEE Ocean Engineering Society, 472-476 (1998).
  3. W. Su, J. Huang, and J. Han, "A robust switchingbeam algorithm designed for long range underwater acoustic communication," Proc. ICWMMN 1-4 (2006).
  4. G. Leus and P. A. van Walree, "Multiband OFDM for covert acoustic communications," IEEE J. Ocean Eng. 26, 1662-1673 (2008).
  5. T. Shimura, Y. Watanabe, and H. Ochi, "Basic Research on time-reversal waves in deep ocean for long acoustic communication," Jpn. J. Appl. Phys. 44, 4772- 4728 (2005).
  6. H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, "Basin-scale time reversal communications," J. Acoust. Soc. Am. 125, 212-217 (2009). https://doi.org/10.1121/1.3021435
  7. H. C. Song and M. Dzieciuch, "Feasibility of globalscale synthetic aperture communications," J. Acoust. Soc. Am. 125, 8-10 (2009). https://doi.org/10.1121/1.3035830
  8. T. Shimura, H. Ochi, Y. Watanabe, and T. Hatton, "Experiment results of time-reversal communication at the range of 300 km," Jpn. J. Appl. Phys. 49, 07HG11 (2010).
  9. H. C. Song, S. Cho, T. Kang, W. S. Hodgkiss, and J. R. Preston, "Long-range acoustic communication in deep water using a towed array," J. Acoust. Soc. Am. 129, EL71-EL75 (2011). https://doi.org/10.1121/1.3554707
  10. F. Mosca, G. Matte, and T. Shimura, "Low-frequency source for very long-range underwater communication," J. Acoust. Soc. Am. 131, EL61-EL67 (2012). https://doi.org/10.1121/1.3670590
  11. H. C. Song and W. S. Hodgkiss, "Diversity combining for long-range acoustic communication in deep water," J. Acoust. Soc. Am. 132, EL68-EL73 (2012). https://doi.org/10.1121/1.4731639
  12. H. C. Song, "Acoustic communication in deep water exploiting multiple beams with a horizontal array," J. Acoust. Soc. Am. 132, EL81-EL87 (2012). https://doi.org/10.1121/1.4734242
  13. T. Shimura, Y. Watanabe, H. Ochi, and H. C. Song, "Long-range time reversal communication in deep water : Experimental results," J. Acoust. Soc. Am. 132, EL49-EL53 (2012). https://doi.org/10.1121/1.4730038
  14. T. Kang, H. C. Song, and W. S. Hodgkiss, "Longrange multi-carrier acoustic communication in deep water using a towed horizontal array," J. Acoust. Soc. Am. 131, 4665-4671 (2012). https://doi.org/10.1121/1.4711009
  15. T. Shimura, H. Ochi, Y. Watanabe, and T. Hatton, "Demonstration of time-reversal communication combined with spread spectrum at the range of 900 km in deep ocean," Acoust. Sci. & Tech. 33, 113-116 (2012). https://doi.org/10.1250/ast.33.113
  16. Z. Liu. K. Yoo, T. C. Yang, S. E. Cho, H. C. Song, and D. E. Ensberg "Long-range double-differentially coded spread-spectrum acoustic communications with a towed array," IEEE J. Ocean Eng. 39, 482-490 (2014). https://doi.org/10.1109/JOE.2013.2264994
  17. H. S. Kim, S. H. Kim, J. W. Choi, and H. S. Bae,, "Bidirectional equalization based on error propagation detection in long-range underwater acoustic communication" Jpn. J. Appl. Phys. 58, SGGF01 (2019). https://doi.org/10.7567/1347-4065/ab1130
  18. J. H. Lee, G. H. Lee, K. M. Kim, and W. J. Kim, "Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea," (in Korean), J. Acoust. Soc. Kr. 38, 371-377 (2019).
  19. H. J. Park, D. H. Kim, J. S. Kim, J. Y. Hahn, and J. S. Park, "Performance improvement of long-range underwater acoustic communication in deep water using spatiotemporal diversity," (in Korean), J. Acoust. Soc. Kr. 38, 587-592 (2019).
  20. A. Parvulescu and C. S. Clay, "Reproducibility of signal transmissions in the ocean," The Radio and Electronic Engineer, 29, 223-228 (1965). https://doi.org/10.1049/ree.1965.0047
  21. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson, "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286