• Title/Summary/Keyword: 인장 응력-변형률 선도

Search Result 20, Processing Time 0.026 seconds

Three-dimensional Behavior and Strength Characteristics of Cubical Hal-dening Materials. (입방체경화재료의 삼차원거동 및 강도특성)

  • 강병선
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.19-28
    • /
    • 1989
  • This study has been carried out as a fundamental course for the analysis of the constitutive- equation for the materials like sands being hardened during Ehear. For this aim, experimentall tests with variable stress paths for the concrete material are performed using the cubical multi- axial test in which the three principle stresses are arbitrarily controlled. Stress-strain behaviors. and strength characteristics are suggested in octahedral planes. Various tests such as HC, CTC, . TC, 55 are performed. The main results summarized are as follows; 1. The order of strength from the largest to the smallest is CTC, TC, SS, and TE test. 2. The octahedral Ehear strength of concrete specimens is dependent upon the stress path(8) 3. There is a direct relation between strength and confining pressure. 4. The ultimate envelopes in the octahedral planes are non-circular-cone shaped. 5. Any ultimate criteria used to predict the strength behavior of concrete must include thin effect of the tensile stresses.

  • PDF

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

The Stress -Strain Behavior of Asan Marine Soil (아산만 해성토의 응력 -변형률 거동)

  • Hong, Chang-Su;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.17-26
    • /
    • 1996
  • The undrained behavior of Asan marine soil was investigated by using an automated triaxial testing device. The stress-strain behavior at the preand postfailure state of marine soil under undrained compression and eatension conditions was compared with the behavior of pure silt, pure clay and the overall behavior of Asan marine soil was predicted with the modified Camflay model and the bounding surface model. The marine soil sampled in Asan bay area was clayey silts with 70oA silt-30% clay content and the testing samples were prepared in both undisturbed and remolded conditions. All samples are normally consolidated with 400 kPa of effective mean confining pressure and each sample is unloaded to 200, 100, 67 kPa, respectively. And then the shear test was performed with different confining pressure. According to experimental results, there exists an unique failure line whose slope is lower than silt's and higher than clay's. It is identified that the undrained shear strength of normally consolidated samples increases after crossing the phase transformation line because of volume dilation tendency which is not seen in clay. Overconsolidated samples show different soil behavior compared with pure silt due to its tendency of change in volume. It is also found that the overall behavior of Asan marine soil cannot be predicted precisely with the modified Cam-clay model and the bounding surface model.

  • PDF

Flexible Durability of Ultra-Thin FPCB (초박형 FPCB의 유연 내구성 연구)

  • Jung, Hoon-Sun;Eun, Kyoungtae;Lee, Eun-Kyung;Jung, Ki-Young;Choi, Sung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.69-76
    • /
    • 2014
  • In this study, we developed an ultra-thin flexible printed circuit board(FPCB) using the sputtered flexible copper clad laminate. In order to enhance the adhesion between copper and polyimide substrate, a NiMoNb addition layer was applied. The mechanical durability and flexibility of the ultra-thin FPCB were characterized by stretching, twisting, bending fatigue test, and peel test. The stretching test reveals that the ultra-thin FPCB can be stretched up to 7% without failure. The twisting test shows that the ultra-thin FPCB can withstand an angle of up to $120^{\circ}$. In addition, the bending fatigue test shows that the FPCB can withstand 10,000 bending cycles. Numerical analysis of the stress and strain during stretching indicates the strain and the maximum von Mises stress of the ultra-thin FPCB are comparable to those of the conventional FPCB. Even though the ultra-thin FPCB shows slightly lower durability than the conventional FPCB, the ultra-thin FPCB has enough durability and robustness to apply in industry.

Molecular Dynamics Study on Mechanical Behavior and Load Transfer of CNT/PET Nanocomposites : the Effects of Covalent Grafting (탄소나노튜브/폴리에스터 복합재의 역학적 거동과 하중전달에 관한 분자 동역학 전산모사 : 그래프팅 가공의 영향)

  • Jin, Juho;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • Molecular dynamics simulation and the Mori-Tanaka micromechanics study are performed to investigate the effect of the covalent grafting between CNT and polyester on the mechanical behavior and load transfer of nanocomposites. The transversely isotropic stress-strain curves are determined through the tension and shear simulations according to the covalent grafting. Also, isotropic properties of randomly dispersed nanocomposites are obtained by orientation averaging the transversely isotropic stiffness matrix. By addressing the grafting, the transverse Young's modulus and shear moduli of the nanocomposites are improved, while the longitudinal Young's modulus decreases due to the degradation of the grafted CNT.

A Study on the Mechanical Properties of Additive Manufactured Polymer Materials (적층조형 폴리머 재료의 기계적 물성 연구)

  • Kim, Dongbum;Lee, In Hwan;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.773-780
    • /
    • 2015
  • Traditionally, additive manufacturing (AM) technology has been used to fabricate prototypes in the early development phase of a product. This technology is being applied to release manufacturing of a product because of its low cost and fast fabrication. AM technology is a process of joining materials to fabricate a product from the 3D CAD data in a layer-by-layer manner. The orientation of a layer during manufacturing can affect the mechanical properties of the product because of its anisotropy. In this paper, tensile testing of polymer-based specimens were built with a typical AM process (FDM, PolyJet and SLA) to study the mechanical properties of the AM materials. The ASTM D 638 tensile testing standard was followed for building the specimens. The mechanical properties of the specimens were determined on the basis of stress-strain curves formed by tensile tests. In addition, the fracture surfaces of the specimens were observed by SEM to analyze the results.

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.

Study on Mechanical Properties of Geopolymer Concrete using Industrial By-Products (산업부산물을 사용한 지오폴리머 콘크리트의 역학적 특성에 관한 연구)

  • Kim, Si-Hwan;Koh, Kyung-Taek;Lee, Jang-Hwa;Ryu, Gum-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.52-59
    • /
    • 2014
  • This study examines the compressive strength, elastic modulus and splitting tensile strength of geopolymer concrete in order to evaluate its mechanical characteristics according to the admixing of fly ash and blast furnace slag. Moreover, identical tests are also conducted considering the amount of powder, the mixing ratio of alkali activator and the mixing ratio of silica fume for further comparative analysis considering various variables. The comparison with the formulae specified in Korean and overseas codes reveal that a mixing ratio of 18% is adequate for the alkali activator and that a replacement ratio of 5% by silica fume is recommended for silica fume. The elastic modulus of the geopolymer concrete appears to increase slightly with the increase of the compressive strength per variable and age and to be smaller than the values predicted by the formulae specified in Korean and overseas codes. In addition, the examination of the stress-strain curves shows that the geopolymer concrete exhibits ductile behavior compared to the conventional OPC. In view of the splitting tensile strength, high strength is observed for a powder content of $400kg/m^3$ and a replacement ratio of 18% by silica fume. The resulting ratio of the compressive strength to the splitting tensile strength is seen to range between 8.7 and 10.2%.

The Variation of Structure and Physical Properties of XLPE during Thermal Aging Process (가교 폴리에틸렌의 열노화에 따른 구조와 물성의 변화)

  • 이미영;김철환;구철수;김복렬;이영관
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.249-254
    • /
    • 2003
  • The variation of chemical structure and physical properties of crosslinked polyethylene (XLPE) during thermal aging process was investigated. The formation of carbonyl functional group resulting from thermal oxidation reaction of XLPE was monitored using X-ray photoelectron spectroscopy and near infrared (NIR) spectroscopy. It was observed that the intensity of carbonyl peak observed at 1715 nm linearly increased with aging time in NIR spectroscopy. The linear relationship between NIR peak absorbance and aging time confirmed that NIR spectroscopy might be used as a proper tool for monitoring the aging process of polymeric materials. Also the formation of crosslinks during the aging process was monitored using thermal mechanical analysis, stress-strain test, and Shore hardness test. The change in the physical properties, such as the increase in the glass transition temperature from 110 to 132$^{\circ}C$, the decrease in the strain from 265 to 110%, as well as the increase in the shore D hardness from 32 to 50, was observed during the aging process.

Numerical Modelling on the Strength of Reinforced Concrete Simple-Continuous Deep Beams with Openings by an Upper-Bound Theorem (상계치 이론을 이용한 개구부를 갖는 철근콘크리트 단순·연속 깊은 보 내력의 수치해석 모델)

  • Yang, Keun-Hyeok;Eun, Hee-Chang;Chung, Heon-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.469-477
    • /
    • 2006
  • Models to predict the ultimate strength of simply supported or continuous deep beams with web openings are proposed. The derived equations are based on upper-bound theorem. The concrete is assumed as a perfectly plastic material obeying the modified Coulomb failure criteria with zero tension cutoff. Reinforcing bar is considered as elastic-perfectly plastic material and its stress is calculated from the limiting principal compressive strain of concrete. The governing failure mechanisms based on test results are idealized as rigid moving blocks separated by a hyperbolic yield line. The effective compressive strength of concrete is calculated from the formula proposed by Vecchio and Collins. Comparisons with existing test results are performed, and they show good agreement.