• Title/Summary/Keyword: 인장 변형성능

Search Result 232, Processing Time 0.022 seconds

Evaluation of Fluidity Over Time and Mechanical Properties of Cement-based Composite Materials for 3D Printing (3D 프린팅용 시멘트계 복합재료의 경시변화 및 역학적 특성평가)

  • Seo, Eun-A;Lee, Ho-Jae;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.73-80
    • /
    • 2022
  • This study evaluated changes in fluidity and rheological properties over time for 3D printed composite materials, and evaluated compressive strength and splitting tensile strength properties for laminated and molded specimens. The composite material for 3D printing starts to change rapidly after 30 minutes of extrusion, and the viscosity of the material tends to be maintained up to 90 minutes, but it was confirmed that construction within 60 minutes after mixing is effective. The compressive strength of the laminated test specimen showed equivalent or better performance at all ages compared to the molded test specimen. In the stress-strain curve of the laminated specimen, the initial slope was similar to that of the molded specimen, but the descending slope was on average 1.9 times higher than that of the molded specimen, indicating relatively brittle behavior. The splitting tensile strength of the P-V laminated specimen was about 6% lower than that of the molded specimen. It is judged that this is because the interfacial adhesion force against the vertical load is affected by the pattern direction of the laminated test specimen.

The Rubber Performance Evaluation for Kick Motor Flexible Seal (킥모터 플렉시블 씰 개발을 위한 고무의 성능 평가)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.90-95
    • /
    • 2011
  • A Kick Motor, KSLV-I second stage propulsion system, utilizes a flexible seal for pitch and yaw axis controls during combustion. A flexible seal consists of the alternate laminate of rubber and composite reinforcement between forward and aft rings. A Kick Motor nozzle is rotated by the shear deformation of rubber layers. Consequently, the development of rubber, which is appropriate to the usage condition of flexible seal, is very important. A tensile test, QLS test (shear modulus and failure shear stress), and aging test have been carried out to confirm the performance of rubber developed. Test results show that the shear modulus of rubber are 0.4310 ~ 0.4997MPa and the failure shear stress is more than 2.5MPa.

A Study on the Mechanical Characteristics and Waterproof Performance of Impermeable Asphalt Pavement Materials (불투수성 아스팔트 포장재료의 방수기능과 역학적 특성에 관한 연구)

  • Kim, Injoong;Kim, Kyeongjin;Lee, Seungyong
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.242-248
    • /
    • 2016
  • This paper presents features of impermeable asphalt pavement material that uses thermoplastic GMA-based polymer(SIS, Stylene Isoprene Stylene) to improve the waterproof performance. Furthermore, as part of this study, the aerodynamic characteristics of the asphalt paving materials, using the newly suggested thermoplastic polymer, are identified through experiments. In the experiment, the aerodynamic characteristics were analyzed by testing on stability, flow values, porosity, dynamic stability, tensile strength ratio and skid resistance in accordance with KS standard and ASTM standard.

Seismic Capacity Strengthened by GFS of Masonry Buildings with Earthquake Damage (지진피해를 입은 조적조 건축물의 유리섬유보강에 따른 내진성능)

  • Kwon, Ki-Hyuk;Choi, Sung-Mo;Lee, Soo-Cheul;Cho, Sang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.231-237
    • /
    • 2004
  • Most of the masonry buildings have many structural defects under an earthquake load due to the small tensile force and ductility. In the foreign countries there are many the reinforcing methods of masonry buildings, but the glass fiber sheet reinforcements must be used due to various conditions in Korea. The purpose of this paper is to estimate the seismic capacity of masonry buildings damaged by earthquake and reinforced by Glass Fiber Sheet. On the basis of test results, the maximum base shear force and deformation of the masonry building with GFS were remarkably increased. From the comparison by existing strength equations and test data, the new strength equation of reinforced masonry buildings with GFS was developed.

Shotcrete-Retrofit of Shear Walls with an Opening (개구부를 가지는 전단벽의 숏크리트 보강)

  • Choi, Youn-Cheul;Choi, Chang-Sik;Kim, Hyun-Min;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.71-80
    • /
    • 2007
  • Because of the characteristics relating to high tensile ductility, High Performance Fiber Reinforced Cementitious Composites (HPFRCC) are studied to be adopted in repair and retrofit of buildings. A series of three shear wall specimens was tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening. The retrofit involved the use of newly developed ECC and MDF(Macro Defect Free), both of which are sprayed through the high pressure pump, over the entire face of the wall. The results indicate that two difference types of retrofitting strategy make the different effects of a rise in the strength and ductility of each specimen.

Cracking Behavior and Flexural Performance of RC Beam with Strain Hardening Cement Composite and High-Strength Reinforcing Bar (고강도 철근과 변형경화형 시멘트복합체를 사용한 보의 균열거동 및 휨 성능)

  • Jang, Seok-Joon;Kang, Su-Won;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • This paper describes the effect of strain hardening cement composite (SHCC) material on structure performance of reinforced concrete (RC) beams with high-strength reinforcing bar. Also, this paper explores the structure application of SHCC in order to mitigation cracking damage and improve the ductility of flexural RC members. The prediction model for flexural strength of doubly reinforced SHCC beams are investigated in this study. To achieve the these objectives, a total of 6 rectangular beam specimens were tested under four point monotonic loading condition. The main parameters included the types of cement composite and reinforcing bar. Test results indicated that reinforced beam specimens with SHCC material were improved the structure performances and damage characteristics. Specifically, replacement of conventional high-strength concrete with SHCC materials has the potential of high-strength steel bar as flexural reinforcement on RC members. It is remarkable that suggested method of reinforced SHCC beams with high-strength reinforcing bar could be used usefully to the structure design.

Structural Behavior of Pre-loaded RC Beams Strengthened by SP, CFS, and CFL (재하상태에서 보강된 철근 콘크리트보의 보강 재료에 따른 구조적 거동)

  • Chung, Lan;Lee, Young-Jea;Moon, Heui-Jeung;Lee, Kyung-Un;Jung, Sang-Jin
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.201-208
    • /
    • 1999
  • In recent years, strengthening by steel plate, carbon fiber sheets, and carbon fiber laminate is spotlighted in order to repair and rehabilitation of R/C structures. In this study, 3 methods of rehabilitation technique were analyzed from the test results. Test parameters were the width of cracks, the method of repair and rehabilitation, the magnitude of pre-load. Deflections, failure loads, strains of reinforcing bar, strains of carbon fiber sheet, carbon fiber laminate and steel plate were measured during the tests. The primary purpose of this research was to analyze the failure mode and structural behavior of strengthened RC beams with/without superimposed pre-load. Test results should that no significant difference was observed between with pre-loaded specimens and no-loaded specimens during rehabilitation.

Structural Capacity of Steel Plate Walls According to Various Infill Plate Details (다양한 웨브강판 상세에 따른 골조강판벽의 구조성능)

  • Park, Hong Gun;Choi, In Rak;Jeon, Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.67-78
    • /
    • 2007
  • In this study, we performed an investigation on the variations in the structural capacity of steel plate walls with various infill plate details. Five three-story plate walls with thin web plates were tested. Parameters for the test specimens were the connection details between the moment frame and infill plates, such as weld and bolt connections, the location and length of weld connection, and coupling wall. Regardless of the details of infilled steel plate, the steel plate wall specimens showed excellent initial stiffness, strength, and energy dissipation capacity. However, the wall with bolt-connected infill plates showed slightly low deformation capacity. This result showed that for workability and cost efficiency,various wall details can be used in practice without causing a significant decrease in the structural capacity of steel plate walls. A method for making projections on strength and energy dissipation capacity of steel plate wall specimens with various details was developed.

The Properties of Concrete Incorporating Stone Powders as Part of Fine Aggregates (잔골재의 일부로 사용된 부순골재 미분말이 콘크리트 성질에 미치는 영향)

  • Kang, Su-Tae;Seo, Jun-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.116-122
    • /
    • 2016
  • This study was intended to evaluate the properties of concrete incorporating stone powders which are created during crushing natural stones to produce crushed aggregates. For concretes with 0~30 wt.% partial replacement fine aggregates with stone powders, experiments of slump, air content, strength and drying shrinkage were carried out. The experiments found that the increase of the amount of stone powders sharply decreased slump and air content. Partially using stone powders instead of fine aggregates was found to increase both compressive and tensile strength slightly. Substituting higher amount of stone powders presented higher drying shrinkage. When HRWRA was added into the concrete with stone powders in order to obtain workability similar to that of plain concrete without stone powders for the same water-cement ratio and unit weight of cement, air content increased with the amount of HRWRA but strength and drying shrinkage were hardly affected by adding HRWRA.

Optimal Section of Ballasted Asphalt Track Considering Design Lifetime and Economic Feasibility (설계수명 및 경제성을 고려한 유도상 아스팔트 궤도의 최적 단면 산정)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.241-251
    • /
    • 2015
  • Compared with ballasted track (BT), ballasted asphalt track (BAT) has been increasingly adopted in many countries due to its more greatly reduced reinforced roadbed thickness and smaller cumulative plastic deformation, and its advantages in terms of maintenance. In this respect, the authors' previous research includes analysis of BAT sections that show performance similar to that of BT sections of the present specifications; reliability verification of the analysis results through real-sized static and dynamic train-load tests were performed. Based on previous research, this paper estimates the track lifetime using the strain of the lower roadbed according to reinforced roadbed thickness; using probabilistic LCC analysis, this paper presents a BAT section that satisfies the design lifetime and that has performance similar to or higher than that of BT.