Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2006년도 학술발표회 논문집
/
pp.858-863
/
2006
본 연구에서는 금강유역을 대상으로 GIS기법에 의해 1:5,000 NGIS자료로부터 DEM과 하천망을 생성하였고, 이를 이용하여 하천차수별 하천수, 하천연장과 평균하천연장의 하천특성인자와 유역면적, 유역평균폭, 최원유로연장, 하천총수, 총하천연장, 수계밀도, 수계빈도, 형상인자, 평균표고, 평균경사, 최대하천차수, 유역내 최고표고, 기복비 등의 유역특성인자들을 추출함으로써 수자원단위지도 기반의 단위유역별 지형학적 특성을 파악하였다. 또한 대상유역을 금강권역상류, 금강권역중류, 금강권역하류유역으로 구분하여 지형학적 인자를 추출하고 그 특성을 분석하였으며, 선형 및 비선형 회귀곡선을 이용하여 인자들 간의 상관관계를 분석함으로써 각 유역을 특징짓는 주요 인자들을 추출하였다.
Jeong, Min Chul;Lee, Won Woo;Kim, Jung Hoon;Kong, Jung Sik
한국방재학회:학술대회논문집
/
한국방재학회 2011년도 정기 학술발표대회
/
pp.38-38
/
2011
일반적으로 레일마모는 열차의 주행안전 및 승차감에 미치는 영향이 크고, 소음 진동의 주요원인으로 작용한다. 또한 레일마모가 발생할 경우 궤도구조의 파괴를 촉진시킴으로써 차량 및 궤도유지보수비를 크게 증가시킨다. 따라서 구간 특성 및 환경 영향 인자 등 현장에서 발생하는 마모 원인을 체계적으로 분석함으로써 마모를 저감할 수 있도록 차량운행 조건과 선로선형 및 궤도구조를 설계하는 것은 중요한 과제이다. CART(Classification And Regression Tree; 분류와 회귀나무) 분석은 패키지화된 좋은 분류 및 예측도구 기법으로 나무의 상위 분리수준에서 일반적으로 나타나는 가장 중요한 입력변수들을 사용하는 등의 입력변수를 선정하는 경우 매우 유용하다. 본 연구에서는 다변수 구간특성 및 환경인자를 고려한 검측 자료 상관관계 분석을 위한 회귀 나무기반 모델(TBM: Tree Based Model) 분석 수행을 위해 지하철 2호선 마모 데이터와 마모 데이터에 영향을 미치는 각종 다변수 구간특성 및 환경인자를 사용하였다. 2호선 지하철의 구간특성 인자 및 환경인자는 레일의 종류, 레일의 위치, 도상, 곡률반경, 캔트 슬랙 및 운행 일수 등으로 구분하였다. 레일의 종류는 ks-50kg과 ks-60kg 두 종류의 레일이 있으며, 레일의 위치는 지상과 지하로 크게 구분할 수 있다. 도상은 콘크리트 도상, 자갈 도상과 일부 구간의 방진상 콘크리트 도상으로 구분할 수 있으며, 곡률반경은 직선구간과 완화곡선 구간 및 최소 250m부터 627m까지 분포된 원 곡선 구간으로 구분할 수 있다. 캔트 간격은 최소 96cm 부터 120cm 간격으로 구분하며, 슬랙은 5~9cm에 분포하고, 운행 기간은 해당 기간 동안 유지보수 이력이 없는 구간을 선정하여 2005년부터 2006년까지 4번에 걸쳐 검측된 지하철 2호선 내선 마모데이터를 사용하였다. 총 X1부터 X7까지 총 7개의 구간특성 또는 환경특성을 영향인자로 선정하였으며, 이러한 영향인자에 의해 결정되는 종속 인자로 Y1인 직마모와 Y2인 측마모를 선정하여 이 중 실질적으로 지하철 궤도의 성능 평가에 주요 판단인자로 사용되는 측마모와 구간특성 및 환경영향인자와의 상관관계 분석을 수행하였다. 해당 마모 데이터가 검측되는 기간 동안 유지보수 이력이 없는 12272 point의 데이터를 검출하였고 CART 프로그램을 이용하여 데이터를 분석하였으며, CART 프로그램의 해석을 위해 종속변수인 직마모량은 각 검측 지점의 마모량에 해당하는 등급으로 변환하여 분석을 수행하였다. 레일의 마모에 영향을 미치는 구간특성 및 환경인자와 종속 변수로 사용된 레일의 마모량 사이의 CART를 이용한 상관관계 분석은 실제 구조물에서 영향인자간의 상관 관계와 유사하며, 추후 연구에서는 이를 바탕으로 하여 정량화된 검측 데이터를 종속변수로 하여 구간특성 또는 환경인자 등 외부 영향인자를 고려한 궤도 검측데이터와의 상관관계 분석을 수행할 계획이다.
Exploratory data analysis is the process of observing and understanding data collected from various sources to identify their distributions and correlations through their structures and characterization. This process can be used to identify correlations among conditioning factors and select the most effective factors for analysis. This can help the assessment of landslide susceptibility, because landslides are usually triggered by multiple factors, and the impacts of these factors vary by region. This study compared two stages of exploratory data analysis to examine the impact of the data exploration procedure on the landslide prediction model's performance with respect to factor selection. Deep-learning-based landslide susceptibility analysis used either a combinations of selected factors or all 23 factors. During the data exploration phase, we used a Pearson correlation coefficient heat map and a histogram of random forest feature importance. We then assessed the accuracy of our deep-learning-based analysis of landslide susceptibility using a confusion matrix. Finally, a landslide susceptibility map was generated using the landslide susceptibility index derived from the proposed analysis. The analysis revealed that using all 23 factors resulted in low accuracy (55.90%), but using the 13 factors selected in one step of exploration improved the accuracy to 81.25%. This was further improved to 92.80% using only the nine conditioning factors selected during both steps of the data exploration. Therefore, exploratory data analysis selected the conditioning factors most suitable for landslide susceptibility analysis and thereby improving the performance of the analysis.
Korean Journal of Construction Engineering and Management
/
제6권1호
/
pp.80-88
/
2005
This research describes an interactive process of analysing the demand factors for apartment on Cheonan area Using subjective statistical data for demand factor the process are categorized into main factors explained for the sensitiveness of correlation coefficient. This investigation is based on an analysis of the work of time series data One of the propose of this research is determining the correlation factors that can be effectively used in the model of forcasting. The results show a significant correlation coefficient on correlation matrix to iud the optimum correlation factors. The paper thus shows how to gain greater influntial factors on principal component analysis Consequently, this paper provides useful information about correlationship, but has limit of regional boundary for effectiveness.
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2023년도 학술발표회
/
pp.147-147
/
2023
낙동강은 4대강 사업을 통한 다기능 보 건설로 하천 환경에 변화가 일어났다. 하천 수심이 증가하고 유속이 느려지는 정체성 수역 특성을 나타내고 있다. 이는 남조류 발생에 영향을 주며 남조류가 분비하는 독성물질 또한 수생태계와 인체에 유해하며 남조류 발생에 따른 다양한 원인인자들이 있다. 이러한 남조류 발생 특성을 정량적으로 규명하기 위하여 최근 조류 관리에 있어 데이터 마이닝 및 머신러닝 기법을 적용한 연구가 이루어지고 있다. 머신러닝에서는 학습자료 선정에 따라 예측 결과가 다르게 나타나며 이는 발생원인이 복잡한 남조류에 있어 중요한 부분이라 볼 수 있다. 낙동강의 다기능보는 하나의 유체에 직렬형으로 8개의 다기능보가 위치하고 있다. 8개의 보로 나누어져있는 하천은 각 구간별로 보의 수리학적 특성, 유역 특성이 다르다. 따라서 구간별 조류 발생 특성이 다르게 나타난다. 본 연구에서는 구간별 특성을 분류하고 조류 발생에 영향을 미치는 주요 인자들을 분석하고자 한다. 조류 발생에 있어 낙동강 8개 보 지점에 대하여 복잡한 남조류 발생 주요 영향인자 분석과 더불어 머신러닝 기법을 이용하여 영향인자에 따른 남조류 발생조건을 정량적으로 분석하였다. 수질 인자뿐만이 아닌 수리학적 인자를 고려하여 수리학적 체적시간이 다른 각 보에서의 조류발생 특성을 분석하고자 하였다. 또한 학습인자에 따라 남조류 예측에 대한 정확도 향상이 가능한지를 확인하고 이를 통해 정체성 하천에서의 남조류 발생 특성에 대해 연구하고자 하였으며 이를 통해 낙동강 남조류 발생 및 관리에 있어 선제적 관리에 활용하고자 한다.
To study reliability and validity of PWI, this newly developed self-administered questionnaire which measures stress, was given to medical students. All respondent(133) were followed 4 weeks later and 92 were retested. Cronbach's $\alpha$ coefficient of data was 0.93. Test-retest reliability measured by Pearson's correlation coefficient was 0.72(P<0.01). Exploratory factor analysis(EFA) performed by principal axis factor method without iteration and by varimax rotation explored 13 principal components(eigenvalues > 1). After exploring 4 factor structure according to previous study results, factor 1 showed good agreement but other factors did not. Confirmatory factor analysis(CFA) showed poor fit of 4 factor model to data. In the further study, it may be considered to model that has unidimensional factor structure.
Value at Risk(VaR) is being widely used as a simple tool for measuring financial risk. Although VaR has a few weak points, it is used as a basic risk measure due to its simplicity and easiness of understanding. However, it becomes very difficult to estimate the volatility of the portfolio (essential to compute its VaR) when the number of assets in the portfolio is large. In this case, we can consider the application of a dimension reduction technique; however, the ordinary factor analysis cannot be applied directly to financial data due to autocorrelation. In this paper, we suggest a dimension reduction method that uses the time-series factor analysis and DCC(Dynamic Conditional Correlation) GARCH model. We also compare the method using time-series factor analysis with the existing method using ordinary factor analysis by backtesting the VaR of real data from the Korean stock market.
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2015년도 학술발표회
/
pp.153-153
/
2015
최근 지구온난화와 같은 기후변화로 인한 기상이변으로 홍수, 태풍 등이 빈번히 발생하면서 지면서 그로 인한 피해도 점점 증가하고 있으며, 이러한 기상 이변으로 인한 피해를 최소화 하기 위하여 기후변화가 수문량에 미치는 영향에 대한 연구가 활발히 진행되고 있다. 그 중, 기후변화로 인한 강수현상의 변화를 분석하기 위한 방법 중 하나로 강수 현상이 주변 기후 요소의 분포에 영향을 받으며, 이를 바탕으로 강수현상에 영향을 미치는 기상인자를 통하여 강수를 분석하는 방법이 있다. 동으로는 태평양을 마주한 아시아 대륙 끝에 위치한 우리나라의 지형적 특성상, 강수 현상에 있어 대륙과 해양의 영향을 모두 받은 위치에 있다. 따라서 우리나라의 강수현상에 영향을 미치는 기상인자를 분석할 경우 대륙에서의 기상변화를 반영한 기상인자와 더불어 태평양에서의 기상변화를 반영한 모든 기상인자를 적용할 필요가 있다고 판단되어 본 연구를 수행하였다. 본 연구에서는 우리나라 자료기간이 30년 이상인 주요 지점의 강수량 자료를 바탕으로 Empirical Mode Decomposition(EMD)을 이용하여 과거의 기후변화에 따른 강수량 변동성과 경향성에 대하여 분석하고, 이를 다양한 기상인자와의 지연상관관계를 분석함으로써, 기후변화에 따른 우리나라 강수량의 변동이 어느 요소에 민감한지를 판단해 보고, 상관관계가 높은 지연개월 수를 판단하여기상인자를 통한 강수량의 예측 가능성을 제시 하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2023년도 학술발표회
/
pp.152-152
/
2023
하천의 건강성을 평가하기 위해 일반적으로 수생태계 건강성 지표(TDI, BMI, FAI, HRI, RVI)가 사용되고 있다. 이 지표는 5가지 등급으로 구분하여 매우 좋음(A), 좋음(B), 보통(C), 나쁨(D), 매우나쁨(E)으로 구분된다. 하지만, 하천의 건강성 관점에서 수질, 토지이용, 지리적 특성, 경관지수와의 상관성을 바탕으로 어떤 영향을 미치는지에 대한 연구가 필요하다. 본 연구에서는 하천의 수생태계 건강성에 영향을 미치는 환경적 인자들과의 관계성을 분석하여 수생태계 건강성이 '좋음'에 해당되는 하천으로 분류하고자 한다. 이를 통해 환경적 인자들의 임계값을 산출하여 하천 관리에 대한 구체적인 우선순위 설정 방안을 제안하고자 한다. 낙동강대권역을 대상으로 수질, 토지이용, 지리적 특성, 경관지수의 여러 변수 중 수생태계 건강성과의 관계에서 대표성을 나타낼 수 있는 환경적 인자를 선정하기 위하여 정준상관분석(CCA)을 수행하였다. 또한 모델 기반의 클러스터 분석을 활용하여 소권역별로 수생태계 건강성이 '좋음'에 해당할 확률을 파악하고, 여기에 해당하는 소권역에 대하여 각각의 환경적 인자에 대한 임계값을 정량적으로 평가하였다. 본 연구에서는 하천의 환경 인자들과의 관계를 분석하여 수생태계 건강성을 평가하고 하천 관리에 대한 구체적인 우선순위를 파악하는 방법을 제안한다. 주성분 분석 및 모델 기반 클러스터 분석을 사용하여 각 소권역에 대한 환경 인자의 임계값을 평가하고, 정책 결정자들이 하천의 건강성을 유지하고 개선할 수 있는 정보를 제공할 수 있다.
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2015년도 학술발표회
/
pp.458-461
/
2015
연구는 북한지역의 표토침식량 산정을 위하여 토양침식을 유발하는 강우침식인자를 산정하고 장기간에 걸친 경향성을 분석하기 위한 연구로서, 대상지역은 평양 관측소 지점의 1981~2014년의 강우자료를 이용하였다. 가용한 북한지역의 강수량은 월강수량이기 때문에, 강우침식인자의 산정은 수정 IAS 지수를 이용한 추정방법과 연강수량을 이용한 추정방법을 적용하였다. 연강우침식인자에 대한 경향성 분석결과 평양지점의 장기간에 걸친 연강우침식인자 값에 대한 뚜렷한 경향성은 발견되지 않는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.