• Title/Summary/Keyword: 인식영역

Search Result 4,318, Processing Time 0.03 seconds

Gesture-based User-Interface Through Hand-region Detection and Hand-movement Recognition (손영역 획득과 손동작 인식에 의한 제스처 기반 사용자 인터페이스의 구현)

  • Ko, Il-Ju;Bae, Young-Lae;Choi, Hyung-Il
    • Korean Journal of Cognitive Science
    • /
    • v.8 no.4
    • /
    • pp.35-53
    • /
    • 1997
  • 본 논문은 컴퓨터 시각을 이용하여 제스처를 인식함으로써 사용자에게 보다 편리한 인터페이스를 제공하는 것을 목표로 한다. 제안하는 제스처 인식 방법은 손영역을 획득하는 손영역 획득 모듈?손영역을 인식하는 인식 모듈로 나누어 수행한다. 손영역 획득 모듈에서는 손색상 모델?손색상 결정함수를 정의하여 칼라영상의 영역 분리를 수행하였고, 칼만필터를 이용하여 손색상 모델을 갱신하고 탐색영역을 제한하여 영역 추적을 용이하게 하였다. 영역 추적은 전 시점의 손영역 정보를 이용하여 현 시점의 손영역을 획득한다. 인식 모듈에서는 정적인 제스처를 표현하는 객체 프레임?행동 프레임, 그리고 동적인 제스처를 표현하는 스키마를 정의한다. 그리고 획득된 손영역?정합을 수행함으로써 제스처를 인식한다. 실험 결갬灌?제안하는 제스처 기반 인터페이스를 적용한 삼목(Tic-Tac-Toe) 게임 프로그램을 구현하였다. 사용자는 제스처를 이용하여 컴퓨터와 게임을 진행한다. 제안하는 시스템은 다른 종류의 게임 프로그램이나 마우스의 역할을 수행하는 윈도우 시스템의 제어, 그리고 가상 현실 시스템에 적용될 수 있다.

  • PDF

Recognition of Outdoor Scenery Containing Roads using Neural Network (신경망을 이용한 도로가 포함된 야외영상 인식)

  • Lee, Hyo-Jong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.2
    • /
    • pp.132-140
    • /
    • 2001
  • 야외에서 인지되는 자연 경치는 다양한 개체, 빛의 산란, 또는 변화를 주는 많은 요소들 때문에 컴퓨터 영상처리에서 인식하기가 쉽지 않다. 본 논문에서는 다층 인지 신경망을 이용하여 도로가 포함된 야외영상에 나타나는 개체들을 인식하는 방법을 연구하였다. 자연 영상을 영역화한 후, 각각의 영역들에 대하여 색상과 기하학적인 특성에 근거하여 특성벡터를 추출하고 이를 신경망에 입력하여 각 영역을 구분하는 2단계의 알고리듬을 제안한다. 먼저 야외 영상들을 개선된 영역 확장법과 병합과정에 의하여 개체별로 영역화하였다. 영역화된 연상은 자연 영상과 함께 영상 데이타베이스에 저장되고, 이 자료들을 이용하여 각 영역의 특성벡터를 계산하였다. 이 특성 벡터를 구성된 신경망의 입력층에 전달하면, 각 영역은 27개의 개체 중의 하나로 출력층에서 인식된다. 제안된 방법은 학습에 사용된 데이타, 학스베 사용되지 않은 새로운 데이타, 그리고 모두 합하여 놓은 데이타의 세가지 데이타 군에서 무작위로 선별하여 인식률을 측정하였다. 학습된 데이타에서는 99.4%까지의 인식률을 보여주었고, 학습되지 않은 데이타에 대해서도 최고 89.1%까지의 인식률을 나타내었다. 제안된 방법은 평균적으로 88.1%~97.9%의 인식률을 보여주어 자연 경치의 인식에 신뢰성이 있는 방법으로 사용될 수 있음을 증명하였다.

  • PDF

Facial Features Extraction for Recognition System of Facial Expression (표정인식 시스템을 위한 얼굴 특징 영역 추출)

  • Kim, Sang-Jun;Lee, Sung-Oh;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2564-2566
    • /
    • 2003
  • 표정인식은 컴퓨터 비전 분야에서 중요한 부분을 차지하고 있으며, 현재 꾸준히 연구가 진행되고 있다. 표정인식 시스템은 크게 얼굴 영역 추출과 표정인식 부분으로 나눌 수 있으며, 얼굴 영역 추출은 전체 인식 시스템의 성능에 큰 영향을 미친다. 특히 표정인식 시스템은 일반 얼굴인식 시스템과 다르게 부분적으로나 전체적으로 형태의 변화가 큰 얼굴에 대해서 정확한 얼굴 영역이 확보되지 않으면 높은 인식성능을 기대하기 어렵다. 따라서 표정인식 시스템은 얼굴 영역 추출이 비중한 부분을 차지하고 있다. 본 논문에서는 영상에서 실시간으로 얼굴 영역을 찾아내고, 그 영역에서 얼굴의 특징점인 눈과 입의 위치를 검출하고, 이를 바탕으로 얼굴의 정확한 영역을 확정하는 일련의 과정을 서술한다.

  • PDF

RoI Detection Method for Improving Lipreading Reading in Speech Recognition Systems (음성인식 시스템의 입 모양 인식개선을 위한 관심영역 추출 방법)

  • Jae-Hyeok Han;Mi-Hye Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.299-302
    • /
    • 2023
  • 입 모양 인식은 음성인식의 중요한 부분 중 하나로 이를 개선하기위한 다양한 연구가 진행되어 왔다. 기존의 연구에서는 주로 입술주변 영역을 관찰하고 인식하는데 초점을 두었으나, 본 논문은 음성인식 시스템에서 기존의 입술영역과 함께 입술, 턱, 뺨 등 다른 관심 영역을 고려하여 음성인식 시스템의 입모양 인식 성능을 비교하였다. 입 모양 인식의 관심 영역을 자동으로 검출하기 위해 객체 탐지 인공신경망을 사용하며, 이를 통해 다양한 관심영역을 실험하였다. 실험 결과 입술영역만 포함하는 ROI 에 대한 결과가 기존의 93.92%의 평균 인식률보다 높은 97.36%로 가장 높은 성능을 나타내었다.

A Study on The Extraction of the Region and The Recognition of The State of Eyes (눈영역 추출과 개폐상태 인식에 관한 연구)

  • 김도형;이학만;박재현;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.532-534
    • /
    • 2001
  • 본 논문에서는 다양한 배경을 가지는 얼굴 영상에서 눈의 위치를 추출하고 누의 개폐 상태를 인식하는 방법에 대하여 제시한다. 얼굴 요소 중에서 눈은 얼굴 인식 분야에 있어서 주요한 특징을 나타내는 주 요소이며, 눈의 개폐 상태 인식은 인간의 물리적, 생체적 신호 감지 및 표정인식에도 유용하게 사용될 수 있다. 본 논문에서는 후부영역을 강조하기 위한 전처리 과정을 수행하고 템플릿 매칭 방법을 사용하여 후부 영역을 추출한다. 추출된 1차 후부 영역들은 설정된 병합식을 사용하여 병합되며, 기하학적 사전지식과 Matching Value를 기반으로 최종 눈후보 영역을 추출한다. 검출된 눈 후보 영역은 검출영역 전처리와 특징점 산출 과정을 거쳐 최종적으로 개폐 판별식을 통해 눈의 개폐상태를 인식하게 된다. 제안한 방법은 눈위치 추출과 개폐인식에서 모두 높은 인식률을 보였으며 향후 운전자의 졸음인식 및 환자 감시장치 등 여러 응용에서 사용될 수 있다.

  • PDF

Recognition of Car License Plate using Kohonen Algorithm (코호넨 알고리즘을 이용한 자동차 번호판 인식)

  • Lim, Yen-Koung;Heo, Nam-Suk;Kim, Kwang-Baek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.04a
    • /
    • pp.896-901
    • /
    • 2000
  • 차량 번호판 인식 시스템은 크게 번호판 영역의 추출과 인식 단계로 구분된다. 본 논문에서는 전처리단계로써 임계화 방식을 이용하여 번호판 영역을 추출한다. 차량 영상을 임계화하고 영상에서 발생되는 잡음을 제거한다. 잡음이 제거된 차량 영상에서 각 라인의 밀도비율을 계산하여 번호판 영역에서 나타나는 밀도의 비율과 비슷하게 나타나는 영역을 후보영역으로 설정한다. 설정된 후보영역이 번호판 영역의 특징과 유사하게 나타나는 부분을 추출한다. 그리고 추출된 번호판 영역은 코호넨 알고리즘의 2${\times0}$2마스크에 적용시켜서 윤곽선을 추출하고, 번호판의 문자와 숫자를 인식한다. 코호넨 알고리즘의 2${\times0}$2마스크를 이용하게 되면, 윤곽선의 잡음을 최대한으로 줄여주는 특성을 가진다. 잡음이 제거된 후에, 번호판의 문자와 숫자들을 코호넨 알고리즘을 이용하여 인식하였다. 실험 결과에서는 임계화 작업을 이용한 번호판 추출과 코호넨 알고리즘을 이용한 번호판 인식이 우수하는 것을 알 수 있다.

  • PDF

A Study on Background Learning for face recognition (얼굴인식을 위한 배경학습에 관한 연구)

  • Park Dong-hee;Park Ho-sik;Seol Jeung-bo;Son Dong-ju;Bea Cheol-soo;Ra Sang-dong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.343-346
    • /
    • 2004
  • 본 논문에서는 고유얼굴 특성과 배경에 기반한 얼굴인식 기술을 제안한다. PCA를 이용한 얼굴 인식은 학습영역과 실험영역으로 나뉘는데, 학습영역에서 고유얼굴을 생성시키고 모든 학습영역을 이 얼굴 공간에 투영시켜 몇 개의 성분값을 저장한다. 그 후 각각의 사랑마다 저장된 성분들의 평균을 대표값으로 가지고 유클리디안 거리를 비교하여 얼굴을 인식하는 것이다. 하지만, 복잡한 배경에 있는 얼굴들을 인식할 때 EFR 방법은 얼굴인식에는 강하지만, 단정으로 조영과 환경변화에 민감하게 반응한다. 복잡한 배경에서 얼굴인식을 위해 배경 패턴을 학습하며, 배경영역은 배경패턴으로부터 생성되어 얼굴영역과 함께 얼굴 인식을 위하여 사용된다. 본 논문에서 제안한 방법이 EFR 방법보다 성능과 복잡한 배경하에서 매우 좋은 곁과를 나타냄을 확인할 수 있었다.

  • PDF

Recognition System of a Car License Plate using a Fuzzy Networks (개선된 Fuzzy ART를 이용한 자동차 번호판 인식에 관한 연구)

  • 허남숙;임은경;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.174-177
    • /
    • 2000
  • 자동차 번호판 인식 시스템을 구현하기 위해서는 영상에서 번호판을 추출하는 영역과 추출된 번호판에서 각 문자의 숫자를 추출하는 영역, 마지막으로 이를 인식하는 영역으로 나누어진다. 본 논문에서는 번호판 영역이 다른 영역보다 녹색의 밀집도가 높다는 특징을 이용하여 이미지에서 번호판을 추출하고, 개선된 퍼지 ART학습 알고리즘으로 자동차 번호판 인식에 적용한다. 실험결과에서는 여러 차량에 대해 인식율이 우수한 것을 보인다.

  • PDF

The Area Recognition for Iries Diagnosis with Edge Image Pattern Matching (에지영상 패턴매칭에 의한 홍채진단 영역인식)

  • 이승용;김윤호;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.653-655
    • /
    • 2001
  • 본 논문은 홍채영상에 대한 에지를 검출하고 홍채진단을 위한 에지영상패턴 매칭을 이용하여 홍채의 진단영역을 인식하는 연구이다. 에지검출기법은 8방향 키어쉬-라프라시언 기법을 적용하고 진단영역인식은 진단기준패턴과 입력에지영상패턴과 오버레이 패턴매칭으로 진단영역을 인식하였다. 그 결과 적용한 에지검출영상의 PSNR이 131정도이며 패턴매칭 영역인식결과는 86%정도로 홍채에 의한 인체의 상태를 추정하는 자동진단시스템으로 환용 가능성을 제시하였다.

  • PDF

Head Gesture Recognition Technique based on Mean Acceleration Measure(MAM) (특징 벡터 보정 기반의 헤드 제스처 인식)

  • 전인자;최현일;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.580-582
    • /
    • 2000
  • 본 논문에서는 MAM을 이용한 특징 벡터의 보정을 기반으로 하는 헤드 제스처 인식에 관해 기술한다. 제안된 시스템은 얼굴 움직임 검출 모듈과 눈 영역 추적 모듈, 미 측정된 벡터 보정 모듈, 측정된 제스처에 대한 인식모듈로 구성된다. 신경망과 모자이크 이미지를 이용하여 얼굴 영역을 검출하고, 이 영역에서 눈 영역을 검출한다. 만약 눈의 쌍이 검출되지 않는다면 시스템은 특징 벡터 보정(MAM)을 수행하여 손실된 정보를 예측한다. 검출된 눈 영역은 정규화된 벡터로 변경된다. 이 벡터의 분산을 이용하여 긍정, 부정, 중립의 제스처를 판단한다. 제스처의 인식은 직접 관측, 이중 HMM, 삼중 HMM을 사용한 다중 인식기를 이용한다.

  • PDF