• Title/Summary/Keyword: 인스트루먼트 패널

Search Result 9, Processing Time 0.031 seconds

Development of Two-Shot Injection-Compression Soft Instrument Panel (2샷 사출 압축 소프트 인스트루먼트 패널 개발)

  • Kong, Byung-Seok;Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.638-643
    • /
    • 2019
  • In order to reduce the cost and weight of the soft-foamed instrument-panel (IP), it was developed the new IP which is made by the two kinds of injection methods. One is the compression-injection with back-foamed foil inserted, and the other is two-shot injection with the passenger airbag door. We named it 'IMX-IP' which means that all components ('X') of the IP with different resins are made in a mold. The development procedure of this technology was introduced (1) Design of the new injection mold through TRIZ method, (2) Optimization of the injection conditions and back foamed-foil for minimizing the foam loss and thickness deviation, (3) Development of CAE for two-shot injection compression, (4) Reliability performance test and application to the mass production. The reduction of the processes through the two-shot injection with back foamed-foil inserted made it possible to enhance soft feeling on IP and reduce the cost and weight simultaneously.

A Research for the pattern of the Instrument Panel Design of passenger cars (승용차 인스트루먼트 패널 디자인 유형의 연구)

  • Koo, Sang
    • Archives of design research
    • /
    • v.12 no.4
    • /
    • pp.99-108
    • /
    • 1999
  • The interior space in a passenger car is consisted with many partial elements, and the instrument panel is the most important part from all of them, which is designate the total image of the interior design and the space variation, drivability and safety of the interior space. ] The instrument panel of a passenger car in the early age had the concept of a wall between the engine room and the passenger cabin on which the instrument for the driver were fitted. Therefore the central mounting of the instruments was the typical feature regardless of the position of a driver seat. As the automobiles became more functional with many equipments, driver oriented instrument panel with energy absorbing materials had been developed, and that was the beginning of the various instrument panel design of these days. The recent instrument panels of passenger car have the tendency of going back to the central instrument mounting as it was at the past on a few cars for the strict safety regulation, a new production technology and for the enhanced drivability. It can be summarized into a few results as these with the analysis of a few recent instrument panels. -minimizing the total volume for the better frontal visibility. -energy absorbing and passive structures for the strict impact regulations. -revival of central instrument mounting for the convenience and safety through minimizing the difference of the focal length of a driver.

  • PDF

A Study on Instrument Panel Welding by Ultrasonic-Waves for Automotive Interior Applied Emotional Design (감성 디자인이 적용된 자동차 인테리어 디자인을 위한 인스트루먼트 패널 초음파 용접에 관한 연구)

  • Lee, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.260-266
    • /
    • 2010
  • Today's consumers are looking for emotional design which can fulfill their own potential desire. Emotion varies according to individual circumstance, age, sex, culture, education, profession and so on. Automotive instrument panel design is the most important part of interior design, because it affects the impression of interior design and has the equipments for safety, entertainment and various information. Thus, this study was performed to apply emotional design to automotive instrument panel which is the most important part of automotive interior, and find the best bonding conditions to build instrument panel efficiently by comparing mechanical properties in thermoplastic resin of polyethylene (PE) adhesion. Satisfactory adhesion was executed in ultrasonic welding for the same materials of PE. The best welding conditions were found to be welding time of I second, welding pressure of 250 kPA for PE-PE welding. Dissimilar materials were adhered when adhesion and ultrasonic welding were performed at the same time.

Determination of Valve Gate Open Timing for Minimizing Injection Pressure of an Automotive Instrument Panel (자동차용 인스트루먼트 패널의 사출압력 최소화를 위한 밸브 게이트 열림 시점 결정)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.46-51
    • /
    • 2012
  • Injection pressure, an important factor in filling process, should be minimized to enhance injection molding quality. Injection pressure can be controlled by valve gate open timing. In this work, we decided the valve gate open timing to minimize the injection pressure. To solve this design problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding CAE tool, to PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration, and Design Optimization) tool using the file parsing method. In order to reduce computational cost, we performed an approximate optimization using meta-models that replaced expensive computer simulations. At first, we carried out DOE (Design of Experiments) using OLHD (Optimal Latin Hypercube Design) available in PIAnO. Then, we built Kriging models using the simulation results at the sampling points. Finally, we used micro GA (Genetic Algorithm) available in PIAnO. Using the proposed design approach, the injection pressure has been reduced by 13.7% compared to the initial one. This design result clearly shows the validity of the proposed design approach.

Gate Locations Optimization of an Automotive Instrument Panel for Minimizing Cavity Pressure (금형 내부 압력 최소화를 위한 자동차 인스트루먼트 패널의 게이트 위치 최적화)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Cho, Dong-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 2012
  • Cavity pressure, an important factor in injection molding process, should be minimized to enhance injection molding quality. In this study, we decided the locations of valve gates to minimize the maximum cavity pressure. To solve this problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding analysis CAE tool, using the file parsing method of PIAnO (Process Integration, Automation and Optimization) as a commercial process integration and design optimization tool. In order to reduce the computational time for obtaining the optimal design solution, we performed an approximate optimization using a meta-model that replaced expensive computer simulations. To generate the meta-model, computer simulations were performed at the design points selected using the optimal Latin hypercube design as an experimental design. Then, we used micro genetic algorithm equipped in PIAnO to obtain the optimal design solution. Using the proposed design approach, the maximum cavity pressure was reduced by 17.3% compared to the initial one, which clearly showed the validity of the proposed design approach.

Creep Behavior of Plastics Used in Automobile Instrument Panels (자동차 인스트루먼트 패널에 사용되는 플라스틱의 크리프 거동)

  • Kim, Young-Sam;Jeon, Chi-Hoon;Tumur-Ochir, Erdenebat;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1549-1556
    • /
    • 2011
  • Tensile and creep tests were performed at various temperatures to investigate the mechanical properties of plastics used in automotive instrument panels. Mechanical properties such as Young's modulus and Poisson's ratios changed markedly with the test temperature. Three-point bending creep tests were performed for three kinds of plastics under four loading conditions. Coefficients in the time-hardening power law creep equation were obtained from the experiment, and the creep behavior was represented by a simple expression. The results of finite element creep analysis showed good agreement with the experimental results, while the difference between the numerical and experimental results increased with the load.

A Study on a Development of Hybrid(Magnesium & Steel) Structure for Application of Cockpit Module (Cockpit Module용 Hybrid Structure개발에 관한 연구)

  • 박병구;이정환;김영삼;한성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.166-170
    • /
    • 2002
  • A hybrid structure composed of magnesium and steel is Instrument Panel structure used for the basement of cockpit module components. For that reason, A hybrid structure has to be designed for satisfying components assembly design facility and styling. There are various models of If like steel structure assembly, however having been applied normally, but magnesium structure assembly selected far saving weight down. This paper introduces a hybrid structure having advantages between steel and magnesium structure and presents a CAE technical solution based on a development project. furthermore, it provides desired direction of the future development is suggested.

Global Trends and Developments on Automotive UX/UI (글로벌 자동차 UX/UI 동향 및 발전 방향)

  • Ryu, Hyomin;Kim, Kyongho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.1145-1148
    • /
    • 2019
  • 최근 자동차 인스트루먼트 패널은 디지털 콕핏으로써 차량 상태 외에도 다양한 정보와 기능을 제공한다. 그러나 무분별하게 표시되는 정보는 오히려 운전자의 주행 집중을 방해하기에, 운전자에게 필요한 정보만을 효율적으로 제공하기 위한 디자인 연구가 진행되고 있다. 본 연구에서는 국내외 자동차 제조사 및 부품사의 양산 차량과 콘셉트카의 디지털 콕핏을 분석해 도출한 개인화, 연결성, 사용성이라는 주요 키워드를 토대로 글로벌 자동차의 UX/UI 동향과 기술개발 현황을 분석하였고, 이를 기반으로 미래 자동차 디지털 콕핏의 발전 방향을 키워드별로 제시하였다.

A Study on the Instrument Panel Design Trend for Automobile Interior (자동차 인테리어의 인스트루먼트 패널 디자인 경향 연구)

  • Cho, Kyung-Sil;Lee, Myung-Ki
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.129-138
    • /
    • 2005
  • Until the early part of the 1990s, interior design has never been thought important by car makers. Repeated attempts have been made to systemize a technical structure, such as layout, driving method, and size, and the car's interior design has been developed by in simple comparison with the exterior design. In the 1990s, however, this trend began to change because consumers began spending more time in their cars, so the motive of the technology development became that of giving comfort and functional satisfaction to the customers. Observing how a person spends inside his or her car and considering the latest trends in car interiors have made a consumer-oriented sense of value i.e., intensifying the personality of the car's interior design and considering the emotional makeup of the consumer factor in the acquisition of a strategic brand identity. These days, car interiors assume a new concept every year due to the constant change in various factors, and the application of a high-tech design, with a sensing function and a navigation system, to achieve driverless running, is being raised as a key trend element technology for the future. Now, at the present when multilateral concept applications of design are attempted under the direct influences from other fields such as product design, fashion and furniture, I would like to lay stress on investigating and analysing the changes in car interior design varying with the background of the times and formative characteristics from the object point of view. On this study, I would like to compare the background of the times and flow of car interior design with priority given to crash pad and would like to attempt to present the direction of the future car interior design together with diversifying major technical factors.

  • PDF