• 제목/요약/키워드: 인셉션V3

검색결과 1건 처리시간 0.013초

Deep Learning Based Tree Recognition rate improving Method for Elementary and Middle School Learning

  • Choi, Jung-Eun;Yong, Hwan-Seung
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권12호
    • /
    • pp.9-16
    • /
    • 2019
  • 본 연구의 목적은 수업 시 스마트기기에 적용할 수 있는 나무 이미지를 인식하고 분류하여 정확도를 측정할 수 있는 효율적인 모델을 제안하는 것이다. 2015개정 교육과정으로 개정되면서 초등학교 4학년 과학교과서의 학습 목표에서 스마트 기기 사용한 식물 인식이 새롭게 추가 되었다. 특히 나무 인식의 경우 다른 사물 인식과 달리 수형, 수피, 잎, 꽃, 열매의 부위별 특징이 있으며, 계절에 따라 모양 및 색깔의 변화를 거치므로 인식률에 차이가 존재한다. 그러므로 본 연구를 통해 컨볼루션 신경망 기반의 사전 학습된 인셉션V3모델을 이용하여 재학습 전 후의 나무 부위별 인식률을 비교한다. 또한 각 나무의 유형별 이미지 정확도를 결합시키는 방식을 통해 효율적인 나무 분류 방안을 제시하며 교육현장에서 사용하는 스마트기기에 적용 할 수 있을 것이라 기대한다.