• Title/Summary/Keyword: 인셉션

Search Result 13, Processing Time 0.019 seconds

Perceptual Generative Adversarial Network for Single Image De-Snowing (단일 영상에서 눈송이 제거를 위한 지각적 GAN)

  • Wan, Weiguo;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.403-410
    • /
    • 2019
  • Image de-snowing aims at eliminating the negative influence by snow particles and improving scene understanding in images. In this paper, a perceptual generative adversarial network based a single image snow removal method is proposed. The residual U-Net is designed as a generator to generate the snow free image. In order to handle various sizes of snow particles, the inception module with different filter kernels is adopted to extract multiple resolution features of the input snow image. Except the adversarial loss, the perceptual loss and total variation loss are employed to improve the quality of the resulted image. Experimental results indicate that our method can obtain excellent performance both on synthetic and realistic snow images in terms of visual observation and commonly used visual quality indices.

Real-Time Fire Detection based on CNN and Grad-CAM (CNN과 Grad-CAM 기반의 실시간 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1596-1603
    • /
    • 2018
  • Rapidly detecting and warning of fires is necessary for minimizing human injury and property damage. Generally, when fires occur, both the smoke and the flames are generated, so fire detection systems need to detect both the smoke and the flames. However, most fire detection systems only detect flames or smoke and have the disadvantage of slower processing speed due to additional preprocessing task. In this paper, we implemented a fire detection system which predicts the flames and the smoke at the same time by constructing a CNN model that supports multi-labeled classification. Also, the system can monitor the fire status in real time by using Grad-CAM which visualizes the position of classes based on the characteristics of CNN. Also, we tested our proposed system with 13 fire videos and got an average accuracy of 98.73% and 95.77% respectively for the flames and the smoke.

Using the Deep Learning for the System Architecture of Image Prediction (엔터프라이즈 환경의 딥 러닝을 활용한 이미지 예측 시스템 아키텍처)

  • Cheon, Eun Young;Choi, Sung-Ja
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.259-264
    • /
    • 2019
  • This paper proposes an image prediction system architecture for deep running in enterprise environment. Easily transform into an artificial intelligence platform for an enterprise environment, and allow sufficient deep-running services to be developed and modified even in Java-centric architectures to improve the shortcomings of Java-centric enterprise development because artificial intelligence platforms are concentrated in the pipeline. In addition, based on the proposed environment, we propose a more accurate prediction system in the deep running architecture environment that has been previously learned through image forecasting experiments. Experiments show 95.23% accuracy in the image example provided for deep running to be performed, and the proposed model shows 96.54% accuracy compared to other similar models.