• Title/Summary/Keyword: 인산염

Search Result 822, Processing Time 0.038 seconds

Immobilization of Pb-contaminated Soils using Phosphate (인산염을 이용한 납오염 토양의 고정화)

  • 박준형;곽문용;신원식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.252-257
    • /
    • 2004
  • 본 연구에서는 인산염을 이용여 납으로 오염된 Clay 사격장과 인위적으로 오염시킨 자연토양의 중금속의 고정화 실험을 수행하였다. 인산염 고정화제로는 DAP (diammonium phosphate)를 사용하였다. DAP를 투입한 중금속 오염토양을 고정화 실험과 TCLP로 용출 하였을 때, 99% 정도 고정화되었다. 인산염 투여양이 증가할수록 고정화 효율은 증가하는 것으로 나타났으며, 최적 인투입량은 128 mmol as P/kg인 것으로 나타났다. DAP 투입양이 증가할수록 토양의 pH는 증가하는 것으로 나타났으며, 토양의 초기 pH 변화에 따라 고정화 효율은 크게 변하지 않은 것으로 나타났으나, pH가 높을수록 고정화 효율은 작은폭으로 증가하는 것으로 나타났다.

  • PDF

Relation between Leaching Characteristics of the positive Ions and Phosphate Removal by granular Converter Slag for the different Conditions and Concentrations of Phosphate (인산염 농도와 폐수조건 변화에 따른 입상 전로슬래그의 양이온 용출 특성과 인산염 제거의 관계에 관한 연구)

  • Lee, In-Gu;Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.372-379
    • /
    • 2007
  • The converter slag can be used to remove phosphate ion into the form of solid state from the wastewater. This research aims to evaluate the change of pH, alkalinity, leaching of positive ion in the wastewater and the removal of phosphate from the initial condition of wastewater. The change of pH was abruptly increased upto pH 11 for the initial condition of pH from 7.0 to 8.5 fer 0.5 unit of pH. The alkalinity was steadily increased from 10 hours of reaction time not same as pH increase. The removal of phosphate was very effective till 10 hours of reaction then it was slow after that time. The positive ion, magnesium ion was leached from the concentration of 2.0 mg/L to 4.3mg/L at the reaction time of 27 hours and 36 hours. Therefore, converter slag can be used to remove the phosphate in the form of Struvite from the wastewater.

  • PDF

Tenderness Improvement and Utilization of Low Quality Meat by High Temperature Aging (고온숙성에 의한 저급육의 연도개선과 그 이용)

  • Sung, Sam-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.549-555
    • /
    • 1989
  • The effect of high temperature aging on the meat tenderness improvement was studied, and also the effect of salt, pyrophosphate and succinic anhydride on binding characteristics of restructed beef were compared. At high temperature aging, shear force value decreased and myofibrillar fragmentation index increased as the aging progressed. From the electronic microscopic observation, the morphological change of myofibril appeared much faster when the meat was aged at high temperature. Added salt increased TBA values and rupture strength while reducing cooking loss. Increase in pyrophosphate decreased rooking loss and Increased rupture strength and TBA value. When salt and pyrophosphate were combined, the effects were somewhat additive. Added succinic anhydride increased cooking loss and hardness and decreased color rating, acceptability rating and adhesiveness, but cohessiveness was not significantly different from control group containing salt and pyrophosphate. The results suggest that high temperature aging have greater improving effect of meat tenderness of Korean native male cattle compared to low temperature aging and addition of succinic ahydride in combination with salt and pyrophosphate reduce binding ability of restructured beef.

  • PDF

Change in the Physicochemical Properties of Doenjang Treated with Phosphate and Gas Absorber during Storage (인산염과 가스흡수제 첨가 된장의 저장 중 이화학적 변화)

  • Lee, Jung-Suck;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.13 no.6
    • /
    • pp.803-807
    • /
    • 2006
  • Browning of commercial Doenjang product during storage and marketing is a main concern in the industry. There have been many studies on the improvement on the quality of Doenjang during storage. In this study, phosphate and gas absorber treatment was introduced in manufacturing of Doenjang to improve the color of commercial Doenjang during storage. Doenjang treated with Phosphate and 9as absorber (sample C). Doenjang teated with Phosphate only (sample B), and the control (sample A) were prepared and their physicochemical and sensory properties were determined during storage at $30^{\circ}C$ for 28 days. Sample C was the best in terms of color as well as sensory evaluation resulting in preventing browning of Doenjang during storage. These result suggest that commercial production of Doenjang should introduce phosphate and gas absorber treatment to improve the quality of Doenjang, and to prevent undesirable browning reaction during storage and marketing.

Solubilization of Insoluble Phosphates by Pseudomonas putida, Penicillium sp. and Aspergillus niger Isolated from Korean Soils (한국 토양(土壤)에서 분리(分離)된 Pseudomonas putida, Penicillium sp. 및 Aspergillus niger에 의한 난용성(難溶性), 인산염(燐酸鹽)의 가용화(可溶化))

  • Suh, Jang-Sun;Lee, Sang-Kyu;Kim, Kwang-Sik;Seong, Ki-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.278-286
    • /
    • 1995
  • Phosphate-solubilizing microorganisms were isolated from agricultural area in Korea, and the solubilizing potential of microorganisms was evaluated in vitro. Of the several microorganisms Pseudomonas putida, Penicillium sp., and Aspergillus niger showed solubilization in all phosphatic compounds such as hydroxyapatite, tricalcium phosphate, aluminium phosphate and rock phosphate tested. Inorganic P solubilization was directly related to the pH drop by each microorganisms. Aspergillus niger was found to be more active in solubilizing phosphate than Pseudomonas putida and Penicillium sp.. The maximum concentration of phosphorus released from each of aluminium phosphate, hydroxyapatite and tri-calcium phosphate by Aspergillus niger in liquid culture was 776ppm, 665ppm and 593ppm, respectively when $KNO_3$ was added as nitrogen source. For rock phosphate, it was 411ppm with ammonium sulfate as nitrogen source.

  • PDF

Isolation and Cultural Characteristics of a Phosphate-Solubilizing Bacterium, Aeromonas hydrophila DA57 (인산가용화균 Aeromonas hydrophila DA 57의 분리와 배양 중 가용화특성)

  • Song, Ok-Ryul;Lee, Seung-Jin;Kim, Se-Hoon;Chung, Soo-Yeol;Cha, In-Ho;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.251-256
    • /
    • 2001
  • To develop biofertilizer solubilizing inorganic phosphate, a bacterium having high abilities to solubilize inorganic phosphate were isolated from cultivated soils. The strain was identified to Aeromonas hydrophila DA57, based on the physiological and biochemical properties. The optimum temperature and initial pH to solubilize insoluvle phosphate in sucrose minimal medium were $30^{\circ}C$ and pH 7.0, respectively. In these conditions phosphate solubilizing activities of the strain against three types of insoluble phosphate were quantitatively determined. It was possivle to distinguish between solubilization through release of gluconic acid and still unknown mechanism. Aemmonas hydrophila DA57 harbored a 4.5 kb cryptic plasmid.

  • PDF

Phosphate Adsorption-Desorption of Kaolinite KGa-2 (Source Clay) (카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성)

  • Cho, Hyen-Goo;Choi, Jae-Ho;Moon, Dong-Hyuk;Kim, Soo-Oh;Do, Jin-Youn
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • The characteristics of phosphate adsorption-desorption on kaolinite was studied by batch adsorption experiments and detailed adsorbed state of phosphate on kaolinite surface was investigated using ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectroscopy. The phosphorous contents were measured using UV-VIS-IR spectrophotometer with 820 nm wavelength. The adsorbed P was generally increased with increasing pH value in the range of pH 4 to pH 9, however it is not distinct. Moreover the adsorbed P was significantly changed with different initial phosphate concentration. The adsorption isotherms were well fitted with the Langmuir equation, Temkin equation, and Freundlich equation in descending order. The maximum Langmuir adsorption capacity of kaolinite KGa-2 is 232.5 ($204.1{\sim}256.5$) mg/kg and has very higher value than that of kaolinite KGa-1b. Most of adsorbed phosphate on kaolinite were not easily desorbed to aqueous solution, but might fixed on kaolinite surface. However it needs further research about the exact desorption experiment. It was impossible to recognize phosphorous adsorption bands on kaolinite in ATR-FTIR spectrum from kaolinite bands themselves, because the absorption peaks of phosphorous have very similar positions with those of kaolinite, and the intensities of the former were very weak in comparison with those of the latter.

Phosphate Adsorption of Kaolinite KGa-1b (Source Clay) (카올리나이트 KGa-1b(표준 점토)의 인산염 흡착 특성)

  • Cho, Hyen-Goo;Johnston Cliff T.;Gnanasiri S. Premachandra G.S.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.247-258
    • /
    • 2006
  • The characteristics of phosphate adsorption on kaolinite was studied by batch adsorption experiments. The phosphorous contents was measured using UV spectrometer with 820 nm wavelength. The experiment with changing reaction time revealed that fast P adsorption occurred within $0{\sim}12$ hour, whereas slow adsorption reaction began after 12 hour. The adsorption percentage depended on kaolinite amount in phosphate solution. Rotary-shaker enhanced the adsorption percentage up to $11{\sim}15%$. The phosphorous adsorption appears to be insensitive to change in the ionic strength of KCl between 0.01 M and 0.1 M. From this result, we can conclude that phosphate was adsorbed on kaolinite as inner-sphere complexes. However, the ionic strength increased to 1.0 M, adsorption decreased. It suggests that phosphate may be adsorbed as outer-sphere complexes. Phosphate adsorption decreased with increasing pH value, but it is not distinct. The adsorption isotherms were well fitted with the Langmuir equation.

Effects of Phosphate Complex on the Functional Properties of Fish Meat paste (혼합 인산염의 첨가가 어류 연육의 기능적 성질에 미치는 영향)

  • 우상규
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.4
    • /
    • pp.544-548
    • /
    • 1997
  • Effects of four kinds of phosphate complex on the water holding capacity(W.H.C) and protein solubility of yellow-corvenia(Pseudosciance manchurica) and hair tail(Trichurus lepturns) meat paste were investigated. The formulations of four kinds of phosphate complex employed to this experiment were made by mixing several phosphates such as sodium polyphosphate, sodium pyro-phosphate, sodium acid pyro-phosphate, potassium pyro-phosphate, sodium tetra meta-phosphate, sodium ultra meta-phosphate and sodium hexa meta-phosphate, and monoglyceride at different mixture ratios. Among the four kinds of phosphate complex, phosphate B complex which was formulated by mixing sodium poly-phosphate 50%, sodium pyro-phosphate 20%, sodium tetra meta-phosphate 20%, sodium acid pyrophosphate 5% and sodium ultra meta-phosphate 5% was most effective on enhancing the W.H.C and protein solubility of yellow corvenia meat paste, and in case of hair tail meat paste, phosphate C complex which was formulated by mixing sodium poly-phosphate 40%, sodium pyro-phosphate 30%, potassium pyro-phosphate 15%, sodium tetra meta-phosphate 10%, and sodium hexa meta-phosphate 5% was more effective than other phosphate complex, and their optimum addition level was 0.4% respectively in weight of fish meat paste. Texture characteristics such as hardness, cohesiveness, and springiness value of Kamaboko(fish meat paste product) were evaluated as best when 0.3% of phosphate B complex was added. The optimum cooking condition of Kamaboko to get good texture was heating for 45 minutes at 85$^{\circ}C$.

  • PDF

Relevance of soil testing on mineral nitrogen in organic farming with regard to water protection (상수도보호구역내에서의 유기농업을 위한 토양진단 시비처방법)

  • Kuecke, Martin
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.1
    • /
    • pp.91-108
    • /
    • 2001
  • 농업영농활동으로 인한 지하수와 지표수오염이 증가함에 따라 유럽연합(EU)과 각국 정부는 상수원보호를 위한 규제를 마련해 나가고 있다. 농민들의 영농활동을 제한하는 이러한 각종 규제에도 불구하고, 농지로부터 유입되는 상수원의 질산염 함량과 농약농도는 계속적으로 증가하고 있다. 지하수 용탈(질산염)과 지표수 유거(인산염, 농약)는 상수원오염은 주범으로 인식되고 있으며, 어느 지역 상수원의 질산염 오염 위험성은 1) 년간 양분균형 계산, 2) 규칙적 토양질산염 분석 등에 의해 파악이 가능하다. 질산염 용탈 이전에 토양질산염 분석을 통한 토양진단은 질산염 용탈 위험성과 작부체계의 지속성에 대한 필수적인 정보들을 제공하게 된다. 유기질비료를 다량 투입하는 유기농업의 지속성은 1) 양분균형의 과다 계산(질소, 인산, 칼리), 2) 토양질산염진단법, 3) 경운층의 토양인산진단법 등에 평가될 수 있다. 상수원을 가장 효과적으로 보호하기 위해서는 토양진단 최적시비전략과 작부체계가 함에 개발되어져야 한다.

  • PDF