• Title/Summary/Keyword: 인산염폐수

Search Result 30, Processing Time 0.026 seconds

Determination of the Origin of Particulate Organic Matter at the Estuary of Youngsan River using Stable Isotope Ratios (${\delta}^{13}C$, ${\delta}^{15}N$) (탄소 및 질소 안정동위원소 비를 이용한 영산강하구역 유기물 기원 추정 연구)

  • Lee, Yeon-Jung;Jeong, Byung-Kwan;Shin, Yong-Sik;Kim, Sung-Hwan;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.175-184
    • /
    • 2013
  • Organic carbon and total nitrogen stable isotope ratios of suspended materials were determined at 3 stations (from Mongtan Bridge to Youngsan river estuary barrage) (n=6, each) from November 2008 to August 2009, in order to understand the origin of particulate organic matter at the Estuary of Youngsan River. Allochthonous organic matter, ammonia-N and silicate were increased after heavy rain (in August). Carbon isotope ratios were significantly different between stations in November and August, and it was possible to determine the origin of organic matter. The heavier nitrogen isotope ratios, as well as higher phosphate concentrations, were found in November than other sampling times. Livestock wastewater and farmland input was likely the main causes of these high values. In addition, YS3 station, the nearest site to estuary barrage, appears to be affected by a substantial amount of livestock wastewater and farmland input, considering that nitrogen isotope ratios were heavier than those at the upper sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the determination of organic matter origin in aquatic environments.

Production of Single Cell Lipid and Treatment of Wastewater Alcohol Manufactory (알코올 발효공장의 폐수처리를 겸한 단세포지질의 생산)

  • 이찬용;김종관이계호
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.172-177
    • /
    • 1993
  • In order to reduce BOD of wastewater from alcohol distillery manufactory, the production of single cell lipid was attempted. Among five yeast strains tested, Rhodotorula glutinis was most desirable for lipid production. Wastewater was treated with 2N NaOH and used as a medium. The optimum pH and temperature for lipid production were found to be 5.0 and $30^{\circ}C$, respectively. The addition of monobasic phosphate was good for cultivation of Rhodotorula glutinis. The C/N ratio was an important factor for lipid production and composition. The best C/N ratio was 50 for the production of single cell lipid. By cultivation Rhodctorula glutinis for 4 days, 4g/L of single cell lipid was harvested and BOD of wastewater reduced by 88.7%.

  • PDF

Effects of N & P Treatment Based on Liquid Organic Materials for Capacitive Deionization(CDI) (축전식 탈염 공정의 액상 유기물에 따른 질소(N) 및 인(P) 처리 특성)

  • Lee, Bo-Ram;Jeong, In-Jo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • Organic carbons such as methanol, ethanol, iso-propanol, methoxy ethanol, glucose are added(1, 2, 3%) in the 2000 ppm $NH_3$ and $H_3PO_4$. As vol.%. cyclic voltammetry measurement of the capacity with the addition of organic carbon, the results of $NH_3$ + 3 vol.% Methanol Addition, $H_3PO_4$ + 2 vol.% iso-propanol addition of the increase in capacity was observed. Applying to the CDI Module cell with an addiction of organic carbon is confirm that remove $NH_4$-N and $PO_4$-P in sewage. Namely, the removal efficiency of $NH_3$ was increase of 16.4% during adsorption, 30.4% during desorption and the removal efficiency of $H_3PO_4$ was increase of 63% during adsorption, 54.7% during desorption. Therefore, the result of this research is confirm that effect of the N, P removal and considered that reduction of the operating costs without removing the organic matter in the influent wastewater.

Nutrient Recovery from Sludge Fermentation Effluent in Upflow Phosphate Crystallization Process (상향류 인 결정화공정을 이용한 슬러지 발효 유출수로 부터의 영양소 회수)

  • Ahn, Young-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.866-871
    • /
    • 2006
  • The nutrient recovery in phosphate crystallization process was investigated by using laboratory scale uptlow reactors, adopting sequencing batch type configuration. The industrial waste lime was used as potential cation source with magnesium salt($MgCl_2$) as control. The research was focused on its successful application in a novel integrated sludge treatment process, which is comprised of a high performance fermenter followed by a crystallization reactor. In the struvite precipitation test using synthetic wastewater first, which has the similar characteristics with the real fermentation effluent, the considerable nutrient removal(about 60%) in both ammonia and phosphate was observed within $0.5{\sim}1$ hr of retention time. The results also revealed that a minor amount(<5%) of ammonia stripping naturally occurred due to the alkaline(pH 9) characteristic in feed substrate. Stripping of $CO_2$ by air did not increase the struvite precipitation rate but it led to increased ammonia removal. In the second experiment using the fermentation effluent, the optimal dosage of magnesium salt for struvite precipitation was 0.86 g Mg $g^{-1}$ P, similar to the mass ratio of the struvite. The optimal dosage of waste lime was 0.3 g $L^{-1}$, resulting in 80% of $NH_4-N$ and 41% of $PO_4-P$ removal, at about 3 hrs of retention time. In the microscopic analysis, amorphous crystals were mainly observed in the settled solids with waste lime but prism-like crystals were observed with magnesium salt. Based on mass balance analysis for an integrated sludge treatment process(fermenter followed by crystallization reactor) for full-scale application(treatment capacity Q=158,880 $m^3\;d^{-1}$), nutrient recycle loading from the crystallization reactor effluent to the main liquid stream would be significantly reduced(0.13 g N and 0.19 g P per $m^3$ of wastewater, respectively). The results of the experiment reveal therefore that the reuse of waste lime, already an industrial waste, in a nutrient recovery system has various advantages such as higher economical benefits and sustainable treatment of the industrial waste.

A Study on the Removal of Phosphorus from Wastewater by Redox Reaction of Cu-Zn metal alloy (Cu-Zn 금속합금의 산화 환원 반응을 이용한 수중 탈인처리에 관한 연구)

  • Kim, Tae-Kyeong;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • The purpose of this study is to evaluate the removal efficiency of phosphorus from synthetic waste water by reduction and oxidation reaction of Cu-Zn metal alloy. Cu-Zn metal alloy applied in this study is composed of 40% of Zn and 60% of Cu, which is so called Muntz metal. And the fibrous type of metal alloy has approximately $200{\mu}m$ of thickness. Metal is oxidized in an aqueous solution to generate electron and metal ion. The mechanism of phosphate treatment is co-precipitation of metal ion and phosphorous ion at various pH and temperature. The treatment efficiency showed the maximum at a one cycle treatment. This result means that the surface area of reaction material is sufficient enough to get reaction equilibrium. Experiment is conducted at various pH from 5 to 9, and showed the maximum efficiency at pH 8. Phosphorous is dominated as a type of $H_2PO_4{^-}$ and $HPO_4{^{2-}}$ at this pH condition. We could not consider the temperature effect independently, because phosphorous removal efficiency showed such a complex mechanism. We could get high efficiency at lower temperature in this research.

Preparation of Inorganic Coagulants Using Red Mud (적니를 이용한 무기응집제의 제조연구)

  • Kim, Jung-Sik;Lee, Jae-Rok;Han, Sang-Won;Hwang, In-Gook;Bae, Jae-Heum
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2085-2095
    • /
    • 2000
  • Red mud is generated as a by-product during the production of aluminum hydroxide from bauxite ore. In this study inorganic coagulants were prepared by leaching aluminum and iron from red mud with acids under various operating conditions. The optimum leaching efficiency of Al and Fe was obtained by contacting red mud with acids of 5M $H_2SO_4$ and 9M HCI with the ratio of 1/10(g/mL) at $85^{\circ}C$ and $25^{\circ}C$, respectively. In addition. the removal experiments of heavy metal ions($Pb^{2+}$, $Cd^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Cr^{3+}$), turbidity and phosphate phosphorus($PO_4{^{3-}}-P$) in aqueous solutions were also studied in various experimental conditions. As a result, the developed coagulants are found to show a good removal performance of heavy metal ions. turbidity and phosphate phosphorus in aqueous solutions.

  • PDF

Simultaneous Removal of Organic Pollutants, Nitrogen, and Phosphorus from Livestock Wastewater by Microbubble-Oxygen in a Single Reactor (단일반응기에서 마이크로버블-산소를 이용한 가축분뇨의 유기오염물질, 질소 및 인의 동시 제거)

  • Jang, Jae Kyung;Jin, Yu Jeong;Kang, Sukwon;Kim, Taeyoung;Paek, Yee;Sung, Je Hoon;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.599-606
    • /
    • 2017
  • The effects of microbubble-oxygen physicochemical method for the removal of organic pollutants, nitrogen, and phosphorus contained in animal manure were investigated using a laboratory scale single reactor. The characteristics of used livestock manure were $36,894{\pm}5,024mg\;TCOD/L$, $22,031{\pm}2,018mg\;SCOD/L$, $4,150{\pm}35mg\;NH_4-N/L$, and $659{\pm}113mg\;PO_4-P/L$. It was confirmed that the amount of organic pollutants, nitrogen, and phosphorus removal was increased by the use of oxygen rather than air as the gas supplied with the microbubble, and by input of larger oxygen amount. When the oxygen was fed with 600 mL flow rate per minute, TCOD and phosphorus removal were 2.5 times and 5.6 times higher than those of air supplied. As the microbubble-oxygen reaction time was longer, the removal rate of nutrients increased gradually. The removal rates of ammonium and phosphorus reach to $41.03{\pm}0.20%$ and $65.49{\pm}1.39%$, respectively, after 24 hours. When the coagulation treatment method was applied to increase phosphorus removal rate from the effluent of microbubble-oxygen treatment, the phosphorus was removed up to 92.7%. However, the removal rate of organic pollutants (TCOD) was as small as $28.7{\pm}0.2%$ within the first 6 hours, and then the negligible removal of TCOD was recorded. This study suggests that microbubble-oxygen can be applied not only livestock manure but also aeration tank of various wastewater treatment plant, which can reduce the load on the associated unit process and produce stable high-quality effluent.

Distribution of Various Nitrogenous Compounds and Respiratory Oxygen Consumption Rate in Masan Bay, Korea During Summer 1986 (1986년 하계 마산만의 각종 질소화합물분포와 산소소비율에 대한 연구)

  • YANG, DONG-BEOM
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.303-310
    • /
    • 1992
  • Studies on the distribution of nitrogenous compounds, and respiratory oxygen consumption rate were carried out in Masan Bay, Korea where large amount of industrial and domestic wastewaters are discharged. In August 1986 the surface layer was significantly influenced by freshwater input. Below the seasonal pycnocline, an oxygen-deficient condition developed in a large area of Masan Bay. Concentrations of DIN, DON and PN were 735.6, 1261.8 and 48.5 umol/l at the head, and 79.1, 73.0 and 39.5 umol/l at the mouth of the inner Masan Bay, respectively. Phytoplankton carbon production was 2,695 mgC/m$^2$/day at the mouth of inner Masan Bay. Dissolved oxygen contents were lower than 1 ml/l from 3 m depth in inner Masan Bay and from 10 m depth in the outer Masan Bay. The high concentration of ammonium and phosphate in the lower layer suggests the active degradation of organic materials in the bottom waters and leaching from sediments. The ERS activity was 232.1 ul O$_2$/l/h in the surface waters of the innermost part of Masan Bay and respiratory oxygen consumption is likely to proceed at a rate of 442 ml O$_2$/m$^2$/day in the bottom waters of this bay. Nitrate removal rate was estimated to be 0.25 umol/l/day via denitrification in the bottom waters of the Masan Waterway. It is estimated from the ETS activity that, at the mouth of inner Masan Bay, 9.3-10.5% of carbon fixed in the upper layer was decomposed below the themocline.

  • PDF

Isolation of Phytase Producing Pseudomonas fragi and Optimization of its Phytase Production (Acid Phytase를 생산하는 Pseudomonas fragi의 분리와 phytase의 생산조건)

  • Kim, Young-Jin;Jang, Eun-Seok;In, Man-Jin;Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.291-298
    • /
    • 2003
  • A bacterial strain producing a high level of an extracellular phytase was isolated from livestock waste water, identified as a strain of Pseudomonas fragi and designated as Pseudomonas fragi Y9451. Under the phytase production medium, the activity of phytase reached the highest level after 120 hours of incubation. On the effect of carbon sources on the phytase production, the most favorable carbon source for phytase production was fructose. As for the effect of nitrogen sources, high levels of phytase activity were detected in the medium containing nutrient broth as the nitrogen source. Free $PO_4^{3-}$ inhibited phytase production with increasing concentration of $KE_2PO_4$ and phytate in the media. The addition of $CaCl_2$ and $MgSO_4$ also resulted in the inhibition of phytase production. To investigate the effect of aeration on the phytase production, different volumes of culture broth in Erlenmeyer flasks were incubated in rotary shaker at the speed of 200 rpm. As a result, a high level of phytase activity was detected at small volume of culture broth as compared to larger volume because of its more aerobic condition.

Spatial Characteristics of Pollutant Concentrations in the Streams of Shihwa Lake (시화호 유입하천의 수질오염물질 농도에 관한 연구)

  • Jang, Jeong-Ik;Han, Ihn-Sup;Kim, Kyung-Tae;Ra, Kong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.289-299
    • /
    • 2011
  • We studied the characteristics of pollutant concentrations in 9 streams that flow into Shihwa Lake in order to provide the scientific data for effective implementation of total pollution loads management system (TPLMS) of the Lake. Suspended solid (SS), chemical oxygen demand (COD), dissolved nutrients ($NO_2$, $NO_3$, $NH_4$, $PO_4$ and $SiO_2$), total phosphorus (TP) and total nitrogen (TN) in stream water from industrial complexes, urban and agricultural regions were determined. Pollutant concentrations in December were higher than that in other sampling periods. COD concentration from industrial complex region with average of 12.6 mg/L was 2 times higher those from urban region (6.6 mg/L) and agricultural region (5.9 mg/L). TP concentration from industrial region also showed higher concentration than other regions. TN concentration in stream water was 5.89 mg/L for industrial region, 3.02 mg/L for urban region and 5.27 mg/L for agricultural region, respectively, suggesting inflow of TN due to fertilizer usage in agricultural field. Relative percentage of nitrogen compounds in TN follows the sequence: $NH_4$ (35.1%) > $NO_2$ (20.0%) > DON (22.8%) > PON (8.9%) > $NO_2$ (3.2%). Concentrations of dissolved nutrients, TP and TN in stream water were 3.2~37.2 times higher than that in Shihwa Lake seawater, therefore large amount of pollutants may be directly entered into Shihwa Lake without any treatment. For Gunja stream of industrial region, pollutants at midstream showed relatively higher concentration compared to upstream and downstream. It is necessary to manage the illegal discharging of sewage and waste water. Our results provide valuable informations on the estimation and reduction of total pollutant loads in the process of establishing adequately strategic and implemental plan of Shihwa Lake TPLMS.