• Title/Summary/Keyword: 인발저항력 예측

Search Result 9, Processing Time 0.027 seconds

Prediction of Pull-Out Force of Steel Pegs Using the Relationship Between Degree of Compaction and Hardness of Soil Conditioned on Water Content (함수비에 따른 토양의 다짐도와 경도의 관계를 이용한 철항의 인발저항력 예측 연구)

  • Choi, In-Hyeok;Heo, Gi-Seok;Lee, Jin-Young;Kwak, Dong-Youp
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.23-35
    • /
    • 2023
  • The Ministry of Agriculture, Food and Rural Affairs has announced design standards for disaster-resilient greenhouses capable of resisting wind speeds with a 30-year frequency to respond to the destruction of greenhouses caused by strong winds. However, many greenhouses are still being maintained or newly installed as conventional standard facilities for the supply type. In these supply-type greenhouses, a small pile called a steel peg is used as reinforcement to resist wind-induced damage. The wind resistance of steel pegs varies depending on the soil environment and installation method. In this study, a correlation analysis was performed between the wind resistance of steel pegs installed in loam and sandy loam, using a soil hardness meter. To estimate the pull-out force of steel pegs based on soil water content and compaction, soil compaction tests and laboratory soil box and field tests were performed. The soil compaction degree was measured using a soil hardness meter that could easily confirm soil compaction. This was used to analyze the correlation between the soil compaction degree in the tests. In addition, a correlation analysis was performed between the pull-out force of steel pegs in the soil box and field. The findings of this study will be useful in predicting the pull-out force of steel pegs based on the method of steel peg installation and environmental changes.

Pullout Resistance of Pressurized Soil-Nailing by Cavity Expansion Theory (공팽창이론에 의한 압력식 쏘일네일링의 인발저항력 산정)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.35-46
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of mean normal stress and the increase of coefficient of pullout friction. From laboratory tests, it was found that dilatancy angle could be estimated by modified cavity expansion theory using the measured wall displacements. The radial displacement increases with dilatancy angle decrease and the dilatancy angle increases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the modified cavity expansion theory.

Uplift Capacity of a Diaphragm Wall Installed in Ground with High Groundwater Table (높은 지하수위 지반 속에 설치된 지중연속벽의 인발저항력)

  • Hong, Won-Pyo;Chim, Neatha
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.5-17
    • /
    • 2014
  • A series of model tests were conducted in order to observe the failure surface generated around a diaphragm wall embedded in ground with high groundwater table. Images of the soil deformation around the model wall were captured during the test. The configuration of the failure surface in soil around the model wall could be obtained from analyzing the image of the soil deformation. Based on the configuration of the failure surface observed in the model test, an analytical approach was proposed to predict the uplift capacity of a diaphragm wall installed in ground. The analytical approach considers not only the wall properties such as length, thickness and surface roughness of diaphragm walls but also the soil strength properties such as the internal friction angle and the cohesion of soil. The predicted uplift capacity of a diaphragm wall shows a good agreement with the experimental one measured in the model test.

Effects of Reinforcement of Steel Fibers on the Crack Propagation of Fissured Clays (균열점토의 균열진행에 대한 강섬유의 보강효과)

  • 유한규
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.119-134
    • /
    • 1994
  • In order to assess the possibility of using steel fibers in the fissured ciays, uniaxial compression tests were performed on both unreinforced and reinforced clay samples containing a pre-existing crack. Test results showed that the steel fiber reinforcement increased resistance to cracks initiation and their propagation, and therefore increased both stress at crack growth initiation and peak stress at failure. The increase in resistance to cracks initiation and their propagation was related to the arresting or deflecting the crack propagation in clay samples by steel fibers. A theoretical interpretation of experimental results was made using fracture mechanics theory and pull-out mechanisms in fiber reinforced materials. It was revealed that the steel fibers had bridging effect through their pull-out action that caused an increased resistance to the propagation of the cracks in the samples. The predicted pull-out force based on theoretical analyses agreed reasonably well with the measured values obtained from pull-out tests.

  • PDF

Estimation of LRFD Resistance Bias Factors for Pullout Resistance of Soil-Nailing (쏘일네일링의 인발저항에 대한 LRFD 저항편향계수 산정)

  • Son, Byeong-Doo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.5-16
    • /
    • 2015
  • Considering the conversion of the Korea Construction Standards to Limit State Design (LSD), we analyzed the resistance bias factor for pullout resistance, as a part of the development of the Load and Resistance Factor Design (LRFD) for soil nailing; very few studies have been conducted on soil nailing. In order to reflect the local characteristics of soil nailing, such as the design and construction level, we collected statistics on pullout tests conducted on slopes and excavation construction sites around the country. In this study a database was built based on the geotechnical properties, soil nailing specifications, and pullout test results. The resistance bias factors are calculated to determine the resistance factor of the pullout resistance for gravity and pressurized grouting method, which are the most commonly used methods in Korea; moreover, we have relatively sufficient data on these methods. We found the resistance bias factors to be 1.144 and 1.325, which are relatively conservative values for predicting the actual ultimate pullout resistance. It showed that our designs are safer than those found in a research case in the United States (NCHRP Report); however, there was an uncertainty, $COV_R$, of 0.27-0.43 in the pullout resistance, which is relatively high. In addition, the pressurized grouting method has a greater margin of safety than the gravity grouting method, and the actual ultimate pullout resistance determined using the pressurized grouting method has low uncertainty.

The Development of End-expanded Soil Nailing Method for Ground Reinforcement and its Behavior Characteristics (선단확장형 쏘일네일링 공법 개발과 거동특성 분석)

  • Moon, Hongduk;Jung, Youndug
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.19-27
    • /
    • 2013
  • Recently, the natural and man-made slope collapses occur frequently because of sudden heavy rains. So, a variety of slope reinforcement methods have been developed and applied to failure slopes. Soil nailing method usage has been increased because of its workability and economic aspects. This method has been applied in combination with other slope stability methods. Soil nailing method is a kind of combinational structure of steel bar and cement grouting. This method uses skin friction between adjacent ground and cement grouting to stabilize the slope. In this study, End-expanded soil nailing method was developed. This method consists of steel bar and anchor body attached at the tip of the nail. During construction, the anchor body at steel bar tip is settled to the ground through the expanding action. In this study, field pull-out tests were performed for un-grouting soil nailing and grouting soil nailing. From the test results, a wedge force of End-expanded soil nailing method was analyzed. And the behavior characteristics of End-expanded soil nailing were studied.

A Study on the Behavior of Reinforced Clay Subjected to Direct Shear (직접전단을 받는 보강점토의 거동에 관한 연구)

  • 유한규
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.67-82
    • /
    • 1994
  • In this study, a reinforced clay model based on the limit equilibrium of forces under direct shear was proposed to predict shear strength increase in clays induced by the steel inclusion. The model accounted for the effects of orientation of inclusion, length, bonding stress between clay and indclusion and passive soil resistance 1 induced by the inclusion movement, on the behavior of reinforced clays. In order to compare with the theoretical predictions, direct shear tests were performed using a direct shear apparatus formed of an open shear box. Also pull-out tests were conducted to determine the bonding stress between the inclusion and clay. From the experimental results, the increase or decrease in shear strength of reinforced clay samples was found to depend on the orientation of inclusionas well as water content of clay samples. From the comparison of theoretical predictions and experimental results, it was found that the theore tical model predicted reasonably well the influence of orientation of the inclusion as well as passive soil resistance induced by the inclusion movement on the mechanical behavior of reinforced clays.

  • PDF

Comparision Analysis of Model Test for Prediction of Uplift Resistance in the Reclaimed Land Greenhouse Foundation (간척지 온실기초 나무말뚝의 인발저항력 예측을 위한 실내모형시험 결과 비교·분석)

  • Song, Chang Seob;Kim, Myeong Hwan;Jang, Ung Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • The object of this paper was to evaulate modified proposed design equation in model test result in order to estimate uplift-resistance of timber pile of reclaimed land greenhouse foundation. Uplift resistance result of model test was increased to according to increased of contact area. Uplift-resistance result of field test tend to lineary increased to according to increased of embedment depth and contact area. Results of field uplift-resistance was evaluate compare with modified proposed design equation results of model test and Effective stress method. As the Effective stress method tend to underestimate, modified proposed design equation results of model test tend to similar type. As the contact area increase, difference between field uplift-resistance results and modified proposed design equation results of model test was considered uplift-speed.

Stability Analysis and Design of Slope Reinforcing Method Using Anchored or Waste Tyre Wall (앵커 또는 폐타이어 벽체를 이용한 사면보강공법의 안정해석 및 설계)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.69-84
    • /
    • 1994
  • In the present study, the application of a method of anchored or waste tyre wall in reinforcing the unstable slope is investigated. For design purposes a method of external stability analysis of the reinforced slope, together with a method of internal stability analysis of a wall itself, is presented. In order to predict the passive resistance expected in the anchor or waste tyre Meyerhof's bearing capacity theory is moapaed and experimental results of stress distribution of a pile section under lateral loading is used. Hurray's pull-out teat results are compared with the passive resistances of anchors predicted by the proposed method, and alto the advantages in design are compared with a method of reinforced earth wall with steel strips. Finally a design example of reinforced slope using anchored or caste tyre wall is presented and the overall stability is analyzed in detail by the proposed method of analysis. The efficiency of a method of anchored or waste tyre wall is further analyzed, comparing with a method of changing geometry of the origin리 unstable slope.

  • PDF