• Title/Summary/Keyword: 인발시험기

Search Result 30, Processing Time 0.027 seconds

On the Critical Relative Displacement between Pile Shaft and Surrounding Soil (말뚝주변 마찰력과 한계상대변위)

  • Kim, Myoung Mo;Shin, Eun Chul;Ko, Hon Yim
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.107-114
    • /
    • 1989
  • Model pile pull-out tests have been executed to investigate the characteristics of the critical relative displacement at which the critical pile skin resistance is mobilized. Test result shows that the critical relative displacement is neither constant nor pile size dependent, but it is the most closely related with the magnitude of the critical skin resistance. The empirical relationship between the two quantities has been established. Behavior of centrifuge physical models of skin-resistance-related problems has been investigated on a quantitative basis by a computational method. A pile downdrag problem has been employed as an example of the skin-resistance-related problems. A simple transfer function type method has been developed for the analysis of the downdrag. It is concluded from the analysis that centrifuge physical modeling of skin-resistance-related problems may lead to an erroneous result on an unconservative side, as may have been expected due to the violation of the similarity rule by the quantity of the critical relative displacement.

  • PDF

Performance Evaluation for All-In-One Construction Method of Curbstone and Gutter Using Formwork Rail and Jig (거푸집 레일과 지그를 이용한 경계석 및 측구의 일체형 시공법에 대한 성능평가)

  • Choi, Jae-Jin;Ko, Man-Gi;Kim, Kyoung-Ju;Choi, Khyung-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.525-534
    • /
    • 2010
  • A road curbstone is a structure installed at the boundary of the sidewalk and the street with the objectives of road drainage, drawing attention and such. The current general construction method of curbstones places foundation concrete for the curbstones first, waits until the concrete reaches the strength to support the curbstones, places the curbstones on top, and then places the gutter and rear filling concrete. Such method has the issues of poor compaction and weakened bond strength of concrete due to split placing of concrete, and causes the curbstones to easily separate due to vehicle impact or earth pressure, in turn creating maintenance costs and spoiling the aesthetics. To improve such conventional construction methods, an all-in-one method was developed using formwork rail and jig where both the curbstones and gutter can be worked at the same time, and to evaluate the structural performance, static tests of lateral loading test, pullout test, and bending test were executed, and dynamic tests such as pendulum test and actual vehicle impact test were executed. In all tests, the all-in-one construction method using formwork rail and jig was shown to be superior to the conventional construction method by the increase of construction quality and bond strength of concrete.

Estimation of Pull-out force by using modified Direct Shear Apparatus (개설된 직접전단시험기(CNS)를 이용한 보강재의 인발력 추정)

  • 유병선;이학무;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.145-154
    • /
    • 2003
  • When a nail pulled out in dense, granular soil, the soil in the vicinity of the nail tends to dilate, but its dilatancy results in a normal stress concentration at the soil/nail interface, thereby increasing the pull-out resistance of the inclusion. It is thought to be occurring within the resistance zone where the soil mass is at stationary state and the reinforcement are held in position by the soil, due to the friction or bond. In this paper, A series of direct shear and interface tests were conducted by using so called‘Constant Normal Stiffness Test Apparatus’which was modified and improved from the conventional direct shear box test rig. Unlikely the normal shear box test, this enables to simulate the different constraint effects of surrounding soil during shear under the conditions of constant stress and volume, constant normal stiffness. The aim of the research programme is to get better understanding of pull-out bond mechanism, thus to explore the possibility of evaluating the pull-out bond capacity of soil/reinforcement at the preliminary design stage from the laboratory test.

  • PDF

Effect of Fiber Volume Fraction on Bond Properties of Structural Synthetic Fiber in Polypropylene Fiber Reinforced Cement Composites (폴리프로필렌섬유보강 시멘트 복합재료에 정착된 구조용 합성섬유의 부착거동에 미치는 섬유 혼입률의 효과)

  • Lee, Jin Hyeong;Park, Chan Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.125-135
    • /
    • 2011
  • The bond properties between polypropylene fiber reinforced cement composites and structural synthetic fiber have been investigated. in this paper. Three levels of polypropylene fibers volume fraction were used, 0.10%, 0.15%, and 0.20% in a series of Dog-bone pull out tests. The bond strength between structural synthetic fiber and polypropylene fiber reinforced cement composites increases with the volume fraction of polypropylene fiber, but the bond strength decreases above the amount of 0.20% by volume of polypropylene fiber reinforced cement composites. Also, the addition of polypropylene fiber a significant improved the interface toughness and the frictional resistance, The microstructure of structural synthetic fiber surface was investigated after the pullout test. The scratched of structural synthetic fiber increased with the polypropylene fiber volume fraction.

Ti-50.4 at% Ni 합금의 형상기억특성에 미치는 냉간가공률의 영향

  • Go, Won-Gi;Kim, Jae-Il;Park, Su-Ho;Kim, So-Jin;Kim, Hyeon;Lee, Gi-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.106.2-106.2
    • /
    • 2012
  • Ti-Ni합금은 CsCl구조의 B2상, monoclinic 구조의 B19'(M)상과 rhombohedral 구조의 R상(R)이 나타난다고 알려져 있고, 이들 상의 변태에 의해 열탄성 마르텐사이트와 응력유기 마르텐사이트에 의한 형상기억효과와 초탄성 효과를 가지고 있다. 또한 Ti-Ni 합금은 우수한 형상기억특성을 가질 뿐만 아니라 생체적합성, 가공성 및 내식성 등이 뛰어나 공업분야 및 생체분야에서 폭 넓게 활용되고 있다. Ti-Ni합금의 형상기억특성은 냉간가공 후 어닐링 처리의 온도와 시간에 따른 matrix 내 Ni의 농도, 석출물의 밀도와 크기, 전위밀도와 전위주위의 응력장에 의해 영향을 받는다고 알려져 있다. 본 연구에서는 Ti-Ni합금의 형상기억 특성 및 변태온도에 미치는 영향을 조사하기 위해 다양한 냉간가공률의 시료를 제작하여 다양한 온도에서 Annealing 처리를 하여 냉간가공률 및 Annealing 온도가 형상기억특성에 미치는 영향을 조사하였다. Ti-50.4 at.% Ni 합금은 진공 아크 용해로에서 용해 하였으며, 용해된 Ingot는 열간단조 및 열간 압출한 후 냉간 인발과 중간온도에서 어닐링을 반복하면서 직경 0.5mm의 선재로 만들었다. 최종적으로 제작한 선재의 냉간가공률은 9.5%, 18.2%, 34.5%, 45% 이었다. 각 시편은 5X10-5torr의 진공으로 석영관에 진공 봉입하여 각각 673K, 723K, 783K에서 1hr 열처리 하였다. 합금의 형상기억특성과 변태온도는 DSC에 의해 조사되었다. DSC 측정 결과, 냉간가공률이 증가함에 따라 마르텐사이트 변태 온도는 감소하였고, 어닐링 온도가 증가함에 따라 마르텐사이트 변태 온도는 증가하였다. 또한 가공률이 증가하여도 R상 변태온도는 큰 변화가 없었고, Annealing온도가 증가함에 따라 R상 변태온도는 감소하였다. 또한, 형상기억특성은 인장시험기를 이용한 정하중 열싸이클 테스트를 이용하여 평가 하였다. 냉간 가공률이 증가함에 따라 안정한 형상기억특성을 나타내었다.

  • PDF

Evaluation of Adhesion, Hydrophobicity and Color Gamut of Nanoparticle embedded Polyurethane Topcoat for Aircraft with 3 Different Nanoparticles (항공기용 3종류 나노입자들로 함침된 폴리우레탄 탑코트의 접착성, 소수성 및 색재현성 특성평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.16-21
    • /
    • 2021
  • In the aircraft industry, anti- and de-icing are one of very important techniques for the safety. The anti-icing technique had not been studied while de-icing technique had been not only researched enough but applied to aircraft industry. In this work, surface roughness and energies of polyurethane (PU) topcoat were controlled with 3 different nanoparticles which was coated to PU topcoat. It was evaluated via static contact angle using distilled water. The adhesion property of 3 nanoparticles was evaluated directly using adhesion pull-off test. The color gamut of nanoparticle coated PU topcoat was also evaluated with 3 different nanoparticles. It was determined using RGB color degree variation between neat PU topcoat and coated nanoparticle. Finally, the optimized nanoparticle was determined to manufacture hydrophobic surface and to maintain color of neat PU topcoat for the aircraft.

Developing an improved water discharge anchor & trap bolt to prevent basic salt penetration to harbor structures (해수 염기 침투방지를 위한 성능개선 형 물배출 앵커 및 트랩볼트 개발에 관한 연구)

  • Ock, Jong-Ho;Moon, Sang-Deok;Lee, Hwa-Sun;Shin, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.674-682
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Effect of amendments and their causes of rice yield increase in ill drained paddy soil (습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究))

  • Park, Chon Suh;Song, Jae Ha;Kim, Yung Sup;Lee, Chung Young;Choh, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1971
  • In order to establish the method of improving ill drained paddy soil where the accumulation of absorption inhibitor is worried in the earlier stages of rice growth, proper soil is selected and an field experiment is designed having treatments such as lime materials, none sulfate fertilizers, boron and straw etc. The data of yield and plant analysis in different stages of rice growth is eveluated and discussed to obtain following summaries. (1) Significant yield increase was made by the treatment of lime materials such as slacked lime or wollastonite powder, materials inhibiting the activity of microorganisms such as boron and of none sulfate fertilizers lacking inhibitor producing sources. (2) The crop scientifice causes of decreasing yield are the decreasing the number of panicles per hill, grains per panicle and the weight of grains. (3) The plant nutritional causes of decreasing yield are the lowering of nitrogen content throughout the life, phosphate content since young premodia formation stage of plant and the decreased content of magnesium, calcium and silicate in straw at harvesting stage. (4) The causes of lowering the content of various elements in rice plant grown in ill drained paddy soil are suggested as root damage by producing and accumulating absorption inhibitors such as organic acids and hydrogen sulfide etc, from the following observed facts; (a) In young premodia formation stage, attaining to the maximum production and accumulation of absorption inhibitor, the phosphate accumulation in plant was smaller in the phosphate plots than without phosphate plots and much higher in the neutralized plots by adding lime materials. (b) In the plots of straw addition, the potassium content in plant at the young premodia formation stage is very low probabley due to root damage by absorption inhibitor produced from the process of straw decomposition but higher at the stage of harvesting probably due to the immetabolic negative absorption of damaged roots. (c) The effect of boron, known as the inhibitor of microorganism activity to decompose organic matter, is apparent. (d) The effect of nonsulfate fertilizer treatment, having no source of producing inhibitor such as hydrogen sulfide, was significant. (e) All the yield components, decided around the young premodia formation stage attaining to the maximum inhibitor concentration in soil and minimum root activity, are significantly decreased.

  • PDF

Application of Ultrasonic Nano Crystal Surface Modification into Nitinol Stent Wire to Improve Mechanical Characteristics (나이티놀 스텐트 와이어의 기계적 특성 향상을 위한 초음파 나노표면 개질 처리에 대한 연구)

  • Kim, Sang-Ho;Suh, Tae-Suk;Lee, Chang-Soon;Park, In-Gyu;Cho, In-Sik;Pyoun, Young-Shik;Kim, Seong-Hyeon
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.80-87
    • /
    • 2009
  • Phase transformation, superelastic characteristics and variation of surface residual stress were studied for Nitinol shape memory alloy through application of UNSM technology, and life extension methods of stent were also studied by using elastic resilience and corrosion resistance. Nitinol wire of ${\phi}1.778$ mm showed similar surface roughness before and after UNSM treatment, but drawing traces and micro defects were all removed by UNSM treatment. It also changed the surface residual stress from tensile to compressive values, and XRD result showed less intensive austenite peak and clear martensite and additional R-phase peaks after UNSM treatment. Fatigue resistance could be greatly improved through removal of surface defects and rearrangement of surface residual stress from tensile to compressive state, and development of surface modification system to improve not only bio-compatability but also resistance to corrosion and wear will make it possible to develop vascular stent which can be used for circulating system diseases which run first cause of death of recent Koreans.

  • PDF

Behavior Characteristics of Helical Pile in Granite Residual Soil (풍화토 지반에 관입된 나선형 강관말뚝의 거동 특성)

  • Cho, Chunhee;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.41-49
    • /
    • 2013
  • The rotate penetration pile is a type of displacement pile: the surrounding soil is displaced when installing the pile, and the pile can exert a large bearing power and pullout force. In addition, it uses displaced soil method that does not generate slime, and its applications are increasing in foreign countries owing to the environmentally friendly characteristics such as small noise and vibration. However, mostly driven piles-which are directly driven to the ground, and bored pile- pre-fabricated piles are buried to prebored underground, are used; however, rotate penetration piles still have limited use. Most of the laboratory tests have been carried out until now to identify the support behavior after installation of piles and ground construction, the evaluating the support behavior is lacking due to the rotation intrusive process of the rotate penetration piles. Therefore, this study used indoor experiments simulating rotation intrusive process in weathered soil, to evaluate the bearing power behavior for the weathered soil, varying the diameter of the helical bearing plates, helical bearing plate spacing, number of the helical bearing plates, and helical bearing plate specifications. As the outcome of this study, the helical pile bearing power evaluation results, change in bearing power in accordance with main specifications, and review on the comparative analysis with the existing theories were provided.