• Title/Summary/Keyword: 인명피해

Search Result 1,723, Processing Time 0.031 seconds

Spectrum Analysis and Detection of Ships Based on Aerial Hyperspectral Remote Sensing Experiments (항공 초분광 원격탐사 실험 기반 선박 스펙트럼 분석 및 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.214-223
    • /
    • 2024
  • The recent increase in maritime traffic and coastal leisure activities has led to a rise in various marine accidents. These incidents not only result in damage to human life and property but also pose a significant risk of marine pollution involving oil and hazardous and noxious substances (HNS) spills. Therefore, effective ship monitoring is crucial for preparing and for responding to marine accidents. This study conducted an aerial experiment utilizing hyperspectral remote sensing to develop a maritime ship monitoring system. Hyperspectral aerial measurements were carried out around Gungpyeong Port in the western coastal region of the Korean Peninsula, and spectral libraries were constructed for various ship decks. The spectral correlation similarity (SCS) technique was employed for ship detection, analyzing the spatial similarity distribution between hyperspectral images and ship spectra. As a result, 15 ships were detected in the hyperspectral images. The color of each ship's deck was classified based on the highest spectral similarity. The detected ships were verified by matching them with high-resolution digital mapping camera (DMC) images. This foundational study on the application of aerial hyperspectral sensors for maritime ship detection demonstrates their potential role in future remote sensing-based ship monitoring systems.

An Analysis of Military Strategies in the Israel-Hamas War (2023): Asymmetric Tactics and Implications for International Politics (이스라엘-하마스 전쟁(2023)의 군사전략 분석: 비대칭 전술과 국제정치적 함의)

  • Seung-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.389-395
    • /
    • 2024
  • This study aims to deeply analyze the military strategies and tactics used in the battles between Israel and Hamas, to understand the military approaches, technical capabilities, and their impact on the outcomes of the conflict. To achieve this, methodologies such as literature review, data analysis, and case studies were utilized. The research findings confirm that Hamas employed asymmetric tactics, such as rocket attacks and surprise attacks through underground tunnels, to counter Israel's military superiority. On the other hand, Israel responded to Hamas's attacks with the Iron Dome interception system and intelligence-gathering capabilities, but faced difficulties due to Hamas's underground tunnel network. After six months of fighting, the casualties in the Gaza Strip exceeded 30,000, and more than 1.7 million people became refugees. Israel also suffered over 1,200 deaths. Militarily, neither side achieved a decisive victory, resulting in a war of attrition. This study suggests that the Israel-Hamas war exemplifies the complexity of modern asymmetric warfare. Furthermore, it recommends that political compromise between the two sides and active mediation efforts by the international community are necessary for the peaceful resolution of the Israel-Palestine conflict.

A Comparative Study of Rain Intensities Retrieved from Radar and Satellite Observations: Two Cases of Heavy Rainfall Events by Changma and Bolaven (TY15) (장마와 볼라벤(태풍 15호)에 동반된 집중호우 레이더관측과 위성관측 자료로부터 도출한 강우강도의 비교연구)

  • Lee, Dong-In;Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.569-582
    • /
    • 2012
  • The heavy rainfalls caused large property damages and human casualties. For example, Changma caused 0.25 billion dollars in damages and 57 deaths and 112 missing by accompanying the torrentially convective heavy rainfall in Seoul, 2011. In addition, TY15 (Bolaven) caused a small damage by bringing a relatively small amount of rainfall and strong wind in Gwanju, 2012. The investigation and analyses of these mesoscale processes of rainfall events for different physical properties using KLAPS for weather environments of the above cases were performed. These typical and ideal meoscale systems by better and more favorable cloud systems were chosen to retrieve rain intensity from Radar and Chullian data. The quantitative rain intensities of Radar and Chullian differ greatly from the ground-based gauge values with underestimating over 50 mm/hr at the peak time of hourly maximum rain intensity about over than 85 mm/hr. However, the Radar rain intensity demonstrated approximately lower than 35 mm/hr, and the Chullian rain intensity less than 60 mm/hr for Changma in Seoul, 2011. For typhoon (TY15, Bolaven) in Gwangju, similarly, the quantitative rain intensities of Radar and Chullian differ from the ground-based gauge values. At the peak time, the hourly maximum rain intensity of ground-based gauge was more than 15 mm/hr. However, the Radar rain intensity showed lower than 5 mm/hr, and the Chullian rain intensity lower than 10 mm/hr. Regarding the above two cases of typhoon and Changma, even though Radar and Chullian rain intensities have been underestimated when compared to the ground-based rain intensity, the distributions of time scale features of both Radar and Chullian rain intensities still delineated a similar tendency of rain intensity distribution of the ground-based gauge data.

Analysis of Climate Change Researches Related to Water Resources in the Korean Peninsula (한반도 수자원분야 기후변화 연구동향 분석)

  • Lee, Jae-Kyoung;Kim, Young-Oh;Kang, Noel
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.71-88
    • /
    • 2012
  • The global warming is probably the most significant issue of concern all over the world and according to the report published by the Intergovernmental Panel on Climate Change (IPCC), the average temperature and extent of global warming around the globe have been on the rise and so have the uncertainty for the future. Such effects of global warming have adverse effects on basic foundation of the mankind in numerous ways and water resource is no exception. The researches on water resources assessment for climate change are significant enough to be used as the preliminary data for researches in other fields. In this research, a total of 124 peer-reviewed publications and 57 reports on the subject of research on climate change related to water resources, that has been carried out so far in Korea has been reviewed. The research on climate change in Korea (inclusive of the peer-reviewed articles and reports) has mainly focused on the future projection and assessment. In the fields of hydrometeorology tendency and projection, the analysis has been carried out with focus on surface water, flood, etc. for hydrological variables and precipitation, temperature, etc. for meteorological variables. This can be attributed to the large, seasonal deviation in the amount of rainfall and the difficulty of water resources management, which is why, the analysis and research have been carried out with focus on those variables such as precipitation, temperature, surface water, flood, etc. which are directly related to water resources. The future projection of water resources in Korea may differ from region to region; however, variables such as precipitation, temperature, surface water, etc. have shown a tendency for increase; especially, it has been shown that whereas the number of casualties due to flood or drought decreases, property damage has been shown to increase. Despite the fact that the intensity of rainfall, temperature, and discharge amount are anticipated to rise, appropriate measures to address such vulnerabilities in water resources or management of drainage area of future water resources have not been implemented as yet. Moreover, it has been found that the research results on climate change that have been carried out by different bodies in Korea diverge significantly, which goes to show that many inherent uncertainties exist in the various stage of researches. Regarding the strategy in response to climate change, the voluntary response by an individual or a corporate entity has been found to be inadequate owing to the low level of awareness by the citizens and the weak social infrastructure for responding to climate change. Further, legal or systematic measures such as the governmental campaign on the awareness of climate change or the policy to offer incentives for voluntary reduction of greenhouse gas emissions have been found to be insufficient. Lastly, there has been no case of any research whatsoever on the anticipated effects on the economy brought about by climate change, however, there are a few cases of on-going researches. In order to establish the strategy to prepare for and respond to the anticipated lack of water resources resulting from climate change, there is no doubt that a standardized analysis on the effects on the economy should be carried out first and foremost.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Studies on Development of Prediction Model of Landslide Hazard and Its Utilization (산지사면(山地斜面)의 붕괴위험도(崩壞危險度) 예측(豫測)모델의 개발(開發) 및 실용화(實用化) 방안(方案))

  • Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.175-190
    • /
    • 1994
  • In order to get fundamental information for prediction of landslide hazard, both forest and site factors affecting slope stability were investigated in many areas of active landslides. Twelve descriptors were identified and quantified to develop the prediction model by multivariate statistical analysis. The main results obtained could be summarized as follows : The main factors influencing a large scale of landslide were shown in order of precipitation, age group of forest trees, altitude, soil texture, slope gradient, position of slope, vegetation, stream order, vertical slope, bed rock, soil depth and aspect. According to partial correlation coefficient, it was shown in order of age group of forest trees, precipitation, soil texture, bed rock, slope gradient, position of slope, altitude, vertical slope, stream order, vegetation, soil depth and aspect. The main factors influencing a landslide occurrence were shown in order of age group of forest trees, altitude, soil texture, slope gradient, precipitation, vertical slope, stream order, bed rock and soil depth. Two prediction models were developed by magnitude and frequency of landslide. Particularly, a prediction method by magnitude of landslide was changed the score for the convenience of use. If the total store of the various factors mark over 9.1636, it is evaluated as a very dangerous area. The mean score of landslide and non-landslide group was 0.1977 and -0.1977, and variance was 0.1100 and 0.1250, respectively. The boundary value between the two groups related to slope stability was -0.02, and its predicted rate of discrimination was 73%. In the score range of the degree of landslide hazard based on the boundary value of discrimination, class A was 0.3132 over, class B was 0.3132 to -0.1050, class C was -0.1050 to -0.4196, class D was -0.4195 below. The rank of landslide hazard could be divided into classes A, B, C and D by the boundary value. In the number of slope, class A was 68, class B was 115, class C was 65, and class D was 52. The rate of landslide occurrence in class A and class B was shown at the hige prediction of 83%. Therefore, dangerous areas selected by the prediction method of landslide could be mapped for land-use planning and criterion of disaster district. And also, it could be applied to an administration index for disaster prevention.

  • PDF

Strategy for Development of HSE Management Framework for Offshore CCS Project in Korea (국내 해양 CCS 사업의 HSE 관리 프레임워크 구축 전략)

  • Noh, Hyonjeong;Kang, Kwangu;Kang, Seong-Gil;Lee, Jong-Gap
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • Korea is preparing an offshore carbon capture, transport and storage (CCS) demonstration project which is recognized as one of important $CO_2$ reduction technologies to mitigate climate change. The offshore CCS project aims to transport, inject and store large amount of $CO_2$ into offshore geologic formation, and has a potential risk of leakage which might cause disastrous damage to human health, environment and property. Therefore, in order to ensure the safety of the offshore CCS project, a strict HSE (health, safety and environment) management plan and its implementation are required throughout the project life cycle. However, there are no HSE domestic laws or regulations applicable to CCS projects, and the related research is insufficient in Korea. For the derivation of the essential and urgent requirement in HSE management framework applicable to the offshore CCS project in Korea, we analysed the HSE management methodologies and foreign CCS HSE management guidelines and cases. First, this paper has analyzed ISO 31000, a generalized risk management principles. Second, we have investigated the HSE management practices of CCS projects in Norway and UK. Based on the analyses, we suggested the necessity of developing the HSE Philosophy and the HSE management process through the whole life cycle. Application of HSE management in early phase of an offshore CCS project will promote systematic and successful project implementation in a cost-effective and safe way.

Effect of Early Defoliation on Fruit Yield, Reserve Accumulations and Flower Bud Formation in 'Sinano Sweet' Apple Trees (조기낙엽이 사과 '시나노스위트'의 수량, 저장양분 및 꽃눈형성에 미치는 영향)

  • Han, Jeom Hwa;Han, Hyun Hee;Kwon, Yong Hee;Jung, Jea Hoon;Ryu, Su-Hyun;Do, Kyeong Ran;Lee, Han-Chan;Choi, In Myeong;Kim, Tae-Choon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 2016
  • 'Sinano Sweet' apple trees were defoliated at intervals of a month from May to October to simulate damage occured by hail and typhoon in Korea, accordingly fruit yield, reserve accumulations and return bloom were investigated. As the more severe defoliation degree was and earlier defoliation time was, fruit weight and fruit yields were more decreased. Fruit weight and yields of 30% defoliated trees, regardless of the defoliation time, showed no significant difference with those of control. Because carbohydrate contents of the 2-year old branches defoliated before August were even lower than those of branches defoliated after September, it was considered that defoliation time is more effective on the carbohydrate content than defoliation degree. Among the trees defoliated before August, 50% defoliated trees at August contained the lowest carbohydrate by 50% of control. Time and degree of defoliation had an effect on the number of flower buds following year. The number of return bloom in trees defoliated from May to July was decreased by delay of defoliation time and was the lowest in trees defoliated at July. On the other hand, it was not have a significant different between control and trees defoliated since August. Relationship between the number of return bloom and carbohydrate reserves showed positive correlation. As a result, it is considered that fruit thinning, when defoliation occurred in the growing season, needs for strengthening the sink function of remained individual fruit effect on fruit enlargement and for increaseing the carbohydrate reserve effect on return bloom.

Development and Application of the Slope Management Program in Urban Area (대도시 사면관리프로그램 개발 및 적용)

  • Kim, Kyeong-Su;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.15-25
    • /
    • 2007
  • In general, the life and asset casualties that occur due to landslide or slope failure in urban areas are larger than that in rural areas. In order to reduce the casualties, a slope management program is necessary to categorize slopes based on properties and to manage them systematically. The slope management system is the establishment of the data base for the geological and geotechnical factor according to slope stability, and the utilization of the data base to manage slopes. The suitable system must develop to slopes in urban area through the survey, analysis and evaluation process. Based on the above necessity, the slope management program which is applicable to slope management in an urban area has been developed at Hwangryung Mt. in Busan as a target area. The developed slope management program has various functions such as slope ID number of each slope or sub-region of a mountain, making a slope data sheet, analysis and grouping of slope stability, and establishment of a data base. The slope management program is constructed by use of GIS, and the survey, test and analysis data according to all slopes can be input and edited into the program. The program can also be utilized practically by end users due to the convenient input, edition printing, management and operation of slope data. Therefore, the slope management system has been established on the application of the developed program in Busan which is located in slope area. As the system is widely applied to other cities, the slope in urban area can be managed systematically and the slope hazards can be minimized.

Lahar flow simulation using Laharz_py program: Application for the Mt. Halla volcano, Jeju, Korea (Laharz_py 프로그램을 이용한 라하르 수치모의: 한라산 화산체에 적용)

  • Yun, Sung-Hyo;Chang, Cheolwoo
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.361-372
    • /
    • 2016
  • Lahar, one of catastrophic events, has the potential to cause the loss of life and damage to infrastructure over inhabited areas. This study using Laharz_py program, was performed schematic prediction on the impact area of lahar hazards at the Mt. Halla volcano, Jeju island. In order to comprehensively address the impact of lahar for the Mt. Halla, two distinct parameters, H/L ratio and lahar volume, were selected to influence variable for Laharz_py simulation. It was carried out on the basis of numerical simulation by estimating a possible lahar volumes of 30,000, 50,000, 70,000, 100,000, 300,000, $500,000m^3$ according to H/L ratios (0.20, 0.22 and 0.25) was applied. Based on the numerical simulations, the area of the proximal hazard zone boundary is gradually decreased with increasing H/L ratio. The number of streams which affected by lahar tended to decrease with increasing H/L ratio. In the case of H/L ratio 0.20, three streams (Gwangryeong stream, Dogeun stream, Han stream) in the Jeju-si area and six streams (Gungsan stream, Hogeun stream, Seohong stream, Donghong stream, Bomok stream, Yeong stream-Hyodon stream) in the Seogwipo-si area are affected. In the case of H/L ratio 0.22, two streams (Gwangryeong stream and Han stream) in the Jeju-si area and five streams (Gungsan stream, Seohong stream, Donghong stream, Bomok stream, Yeong stream-Hyodon stream) in the Seogwipo-si area are affected. And in the case of H/L ratio 0.25, two streams (Gwangryeong stream and Han stream) in the Jeju-si area and one stream (Yeong stream-Hyodon stream) in the Seogwipo-si area are affected. The results of this study will be used as basic data to create a risk map for the direct damage that can be caused due to volcanic hazards arising from Mt. Halla.