경제 위기 대비를 위해 인공지능을 활용한 주식시장 변동성 이상을 탐지하는 목적을 가지고 있다. 글로벌 이슈와 경제 위기 대비를 위해 주식시장 변동성 예측의 중요성이 부각되고 있으며, 기존의 주식시장 변동성 지수인 VIX 의 한계로 인해 더 복잡한 모델 및 인공지능을 활용한 연구에 관심이 집중되고 있다. 기존의 주식시장 변동성 예측에 관한 연구들은 통계적인 방법을 사용했으며 인공지능을 이용한 연구 또한 대부분 이상치 구간을 표시하여 예측을 목표로 하고 있으나 이러한 접근법은 라벨이 있는 데이터 수집 어려움, 클래스 불균형 문제가 있다. 본 연구는 인공지능을 활용한 주식시장 변동성 탐지에 기여하고 지도 학습 방식 대신 비지도 학습 기반의 이상탐지모델을 사용하여 주식시장 변동성을 예측하는 새로운 방법론을 제안한다. 본 연구에서 개발한 인공지능 모델은 IsolationForest 모델을 활용하며, 시계열 데이터를 전처리한 후 정상성을 확보하는 등의 과정을 거친다. 실험 결과로 인공지능 모델이 주요 경제이슈를 이상치로 검출하는 성능을 확인하였으며 재현율 약 93.6%, 정밀도 100%로 높은 성능을 달성했다.
인공신경망은 인간의 신경세포인 뉴런을 모델로서 사용했다. 인간은 외부에서 오는 정보를 뇌에서 받아들이고 판단한다. 받아들인 정보를 통해 어떻게 산출할 것인지에 대한 일들을 기능하게 된다. 그러한 일련의 과정을 필기체 숫자 데이터를 통하여 사람이 유도하는 예측 값을 인식해내고, 학습된 예측 값을 실제 값과 비교해 분석하였다. 그리고 더 나아가 인공신경망에 대해 어떻게 응용할 것인지 논의하였다.
CNN 은 합성곱 연산을 사용하는 인공신경망의 한 종류이다. 이러한 인공 신경망에서는 훈련 데이터에 대한 과도한 학습으로 인해 시험 데이터에 제대로 반응하지 못하는 오버피팅이 발생할 우려가 있다. 이를 해결하기 위해 DropOut 과 DropConnect 를 사용할 수 있다. 본 논문에서는 DropOut 과 DropConnect 를 통한 학습 정도를 실험을 통해서 비교해보고, 인공 신경망에서 이 방법의 효과를 살펴본다.
To compare the tolerance of crops to acid rain at different growth stages a simulated acid rain (SAR) of pH 2.7 was applied to rice, soybean, and hot pepper from vegetative growth stage to harvest (Veget.-Harvest) and from reproductive growth stage to harvest (Reprod.-Harvest). Visual damages of crops by SAR were greater in the order of rice < hot pepper < soybean and greater at Veget.-Harvest than at Reprod.-Harvest treatment. Chlorophyll content of all crops was greater in the order of Veget.-Harvest < Reprod.-Harvest treatment < control, but photosynthetic activity was not affected by SAR treatments. Nitrogen concentration and uptake of rice plants at harvest were similar among SAR treatments, but those of soybean and hot pepper were greater at Veget.-Harvest treatment than at Reprod.-Harvest treatment or control. Sulfur concentration of all crops was not affected by SAR treatments, but total sulfur uptake of soybean was greater in SAR treatments than untreated control. Grain yield of rice and soybean was not affected by SAR although grain fertility, percent ripened grains, and 1,000-grain weight of rice at Veget.-Harvest treatment were lower compared with Reprod.-Harvest treatment or control. Fruit dry weight of hot pepper was greater in the order of Veget.-Harvest < Reprod.-Harvest < control due to decreased fruit number per plant and average fruit weight. At one time application of SAR at flowering stage, brown spots were observed on the spikelets of rice at below pH 2.3. Petals of soybean and hot pepper were wilted at pH below 1. 7 and 2.0, respectively, but fruit setting was not affected by the pH of the SRA.
Recently, a low-impact development (LID) technic such as a wetland has been proposed as a Nature-friendly process for reducing pollutants caused by livestock wastewater. Therefore, the Daphnia magna toxicity was analyzed for livestock wastewater samples, to determine if a wetland system would also be effective in reducing this ecotoxicity. In the present study, acute D. magna toxicity was not significantly dependent on the presence and type of reed, nor type of media. However, when treated with construction wetlands, ecotoxicities decreased as well as TN, TP and COD concentrations. Therefore, it is considered that a construction wetland system with bio reeds and bio-media as well as general reeds would be effective to reduce the ecotoxicity of livestock wastewater. To apply a wetland system as the subsequent treatment process to a livestock waste water treatment facility, it is necessary to perform an integrated evaluation such as treatment efficiency and the ecotoxicity test for various characteristics of livestock wastewater.
인간과 인공생명체(Artificial Life Systems)가 서로 커뮤니케이션을 진행하기 위하여 인공생명체는 자신이 의도한 바를 음성, 표정, 행동 등 다양한 방식을 통하여 표현할 수 있어야 한다. 특히 자신의 좋아함과 싫음 등 자율적인 감정을 표현할 수 있는 것은 인공생명체가 더욱 지능적이고 실제 생명체의 특성을 가지게 되는 중요한 전제조건이기도 하다. 위에서 언급한 인공생명체의 감정표현 특성을 구현하기 위하여 본 논문에서는 음성 속에 감정을 포함시키는 방법을 제안한다. 먼저 인간의 감정표현 음성데이터를 실제로 구축하고 이러한 음성데이터에서 감정을 표현하는데 사용되는 에너지, 지속시간, 피치(pitch) 등 특징을 추출한 후, 일반적인 음성에 위 과정에서 추출한 감정표현 특징을 적용하였으며 부가적인 주파수대역 필터링을 통해 기쁨, 슬픔, 화남, 두려움, 혐오, 놀람 등 6가지 감정을 표현할 수 있게 하였다. 감정표현을 위한 음성처리 알고리즘은 현재 음성합성에서 가장 널리 사용되고 있는 TD-PSOLA[1] 방법을 사용하였다.
국방지휘통제체계는 다양한 감시정찰 자산으로부터 수집된 많은 양의 정보를 융합하고 분석하여 지휘관이 최적의 의사결정을 내릴 수 있도록 지원하는 시스템이다. 하지만 현재 운영 중인 지휘 통제체계는 단순히 정보를 보여주고 유통하는 체계로 대량의 정보를 분석하고, 최적의 방책을 제공하는 등과 같은 지휘관의 의사결정을 지원하기에는 미흡한 수준이다. 지휘통제체계의 지능화 수준을 높이기 위해서 최근 이슈가 되고 있는 인공지능을 지휘 통제체계에 적용해 보고자 한다. 인공지능은 다양한 분야와의 융합을 통해 새로운 가치를 창출하고 사회 전반의 변혁을 이끌고 있다. 이러한 특성으로 4차 산업혁명의 핵심으로 주목받고 있다. 본 논문은 주요 선진국들의 인공지능 관련 추진동향과 인공지능의 국방적용을 위한 군사적 활용의 필요성, 그리고 지휘통제체계의 적용을 위한 고려요인들에 중점을 두었다. 지휘관의 의사결정을 보다 효과적으로 지원할 수 있도록 지능화된 지휘통제체계로 발전하는 데 기여할 수 있다고 생각한다.
인공지능이 정형화된 수치 데이터뿐만 아니라 비정형 데이터까지도 인식해야하는 시대가 왔다. 보안 분야 이외에도 사회 전반에서 숫자 인식을 활용하고 점차 확대되고 있다. 숫자인식을 위해 인공신경망을 이용하였다. 인공신경망은 입력 층, 중간 층, 출력 층으로 이루어져 있다. 각 층은 노드와 노드들을 연결하는 가중치로 구성되어 있다. data set을 입력 값으로 하여 각각의 가중치를 곱한다. 오차역전파법을 이용하여 가중치 값을 갱신한다. 갱신하는 과정에서 학습률과 가중치 조정을 통해 결과 값의 정확도를 연구한다. 궁극적으로 학습된 data set과 인공신경망 알고리즘을 이용하여 손 글씨로 된 숫자를 인식한다. 실험에서 학습률과 중간층의 노드 개수를 조정하여 인식률을 높여간다.
인공지능 기반의 생활폐기물의 인식 및 선별에서, 선별 정확도의 저하는 인식 대상의 형태적 다양성과 학습데이터 부족 및 불균등성에 기인한다. 본 연구에서는 비전 인공지능 기반의 효과적인 폐기물 선별을 위한 인식 시스템 및 감독학습 기반의 인공지능 학습 기법을 제안한다. 생활폐기물 중 순환자원적 가치가 높은 CAN, PET, 그리고 이와 형상적으로 유사한 폐기물에 대해 본 연구에서 제안된 시스템에서 물체원형 및 훼손된 형태의 총 18 종 이미지 데이터를 대상으로, 감독학습기반의 인공지능 모델 제작에서 최적의 데이터 레이블링을 위한 분류체계를 제시한다.
본 논문에서는 설명가능한 머신러닝 모델과 관련된 다양한 도구를 활용해보고, 최근 각광받는 주제인 신뢰성에 대해서도 고찰해보았다. 근래의 인공지능 모델은 설명력을 덧붙여 정보 장벽을 낮추는 방향으로 진화하고 있다. 이에 따라 AI 모형이 제공하는 정보량이 늘고 사용자 진화적 인 방식으로 바뀌면서 사용자층이 확대되고 있는 추세이다. 또한 데이터 분석 분야의 영향력이 높아지고 연구 주체들이 다양해지면서, 해당 모델이나 데이터에 관한 신뢰성을 확보해야한다는 요구가 많아지고 있다. 이에 많은 연구자들이 인공지능 모델의 신뢰성의 확보를 위해 노력하고 있다. 본 연구에서는 이러한 노력의 발자취를 따라가보면서 인공지능의 설명가능성에 관하여 소개하려고 한다. 그 과정에서 민감한 데이터를 다루어보면서 신뢰성 활보의 필요성에 대해서도 논의해보려고 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.