• 제목/요약/키워드: 인공 지능 신경망

검색결과 597건 처리시간 0.033초

유전자 알고리즘과 신경망을 이용한 MMORPG의 지능캐릭터 구현에 관한 연구 (A Study on Implementation of Intelligent Character for MMORPG using Genetic Algorithm and Neural Networks)

  • 권장우;장장훈
    • 한국멀티미디어학회논문지
    • /
    • 제10권5호
    • /
    • pp.631-641
    • /
    • 2007
  • 국내 게임시장은 MMORPG만을 생산하는 기이한 형태로 발전하고 있다. 하지만 지능형 캐릭터의 수준은 여전히 제자리걸음을 하고 있다. 본 논문에서는 유전자 알고리즘과 신경망을 사용하여 보다 뛰어난 지능을 가진 캐릭터 구현 방안을 제시하고자 한다. 또한 현재 MMORPG에서 사용되는 다른 인공지능 기술들과 비교했을 때, 그 성능이 뒤쳐지지 않음을 증명하고, 실제 MMORPG에 적용할 수 있는 구체적인 알고리즘과 구현 방법에 대해 설명한다.

  • PDF

신경회로망을 이용한 생산라인 최적화 (Manufacturing Line Optimization Using Artificial Neural Networks)

  • 허철회;박진희;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.79-82
    • /
    • 2001
  • 생산품을 제조하는 과정에서 처리 시간에 따른 제조 기계를 최적의 수로 결정함으로서 공정 과정에서 비효율적인 제조 기계의 활용 비율을 줄일 수 있으며, 이는 공정 과정의 비용을 최소화할 수 있는 방법 중에 하나이다. 본 논문에서는 핸드폰에 사용되는 여러 가지 모델의 배터리를 생산하는 공장의 작업 과정을 조사하고, 일정하기 않은 처리 시간과 작업에 필요한 제조 기계를 조사하였다. 이를 인공 신경망(ANN)의 역전파 알고리즘을 이용하여 생산현장에서 효율적인 처리 시간과 공정 과정에서 생산에 적합한 기계의 수를 최적화시키는 방법을 제안한다.

  • PDF

클라우드 환경에서 인공지능 모듈 기반 로봇 응용을 위한 증강 지능 모델 공유 기술 개발 (A Development of Augmented Intelligence Model Sharing for AI Modular Robot Application in Cloud Environment)

  • 장철수;송병열;정영숙
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.129-131
    • /
    • 2022
  • 본 논문에서는 다양한 인공지능을 모듈화하고 모듈들을 서로 결합하여 서비스를 제공할 수 있는 지능형 서비스 로봇에서, 인공지능 모듈들을 라이브러리 간의 의존성을 해소하기 위한 방법 중 하나인 가상 머신의 일종인 도커(Docker)를 활용하여 컨테이너화하여 사용할 때, 인공지능 모듈 내부에서 사용하는 신경망 데이터에 해당하는 지능 모델에 대해 버전 관리를 수행하면서 클라우드 등 외부 서버를 이용하여 증강시킨 지능 모델을 공유하는 기술 개발에 대해 설명한다.

인공지능의 역사, 분류 그리고 발전 방향에 관한 연구 (A Study on the History, Classification and Development Direction of Artificial Intelligence)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.307-312
    • /
    • 2021
  • 인공지능은 오랜 역사가 있으며, 이미지 인식이나 자동번역 분야를 포함한 여러 분야에서 활용되고 있다. 그래서 처음 인공지능을 접하는 경우에 많은 용어와 개념, 기술 때문에 연구의 방향 설정이나 수행에 어려움을 겪는 경우가 많다. 이번 연구는 이러한 어려움을 겪는 연구자들에게 도움이 될 수 있도록 인공지능에 관련된 중요 개념을 정리하고, 지난 60년의 발전 과정을 요약한다. 이를 통하여 방대한 인공지능 기술 활용의 기초를 확립하고 올바른 연구의 방향성을 수립할 수 있다.

디코더를 활용한 기계독해 모델의 근거 추출 방법 (Evidence Extraction Method for Machine Reading Comprehension Model using Recursive Neural Network Decoder)

  • 한규빈;장영진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.609-614
    • /
    • 2023
  • 최근 인공지능 시스템이 발전함에 따라 사람보다 높은 성능을 보이고 있다. 또한 전문 지식에 특화된 분야(질병 진단, 법률, 교육 등)에도 적용되고 있지만 이러한 전문 지식 분야는 정확한 판단이 중요하다. 이로 인해 인공지능 모델의 결정에 대한 근거나 해석의 중요성이 대두되었다. 이를 위해 설명 가능한 인공지능 연구인 XAI가 발전하게 되었다. 이에 착안해 본 논문에서는 기계독해 프레임워크에 순환 신경망 디코더를 활용하여 정답 뿐만 아니라 예측에 대한 근거를 추출하고자 한다. 실험 결과, 모델의 예측 답변이 근거 문장 내 등장하는지에 대한 실험과 분석을 수행하였다. 이를 통해 모델이 추론 과정에서 예측 근거 문장을 기반으로 정답을 추론한다는 것을 확인할 수 있었다.

  • PDF

임베디드 보드에서의 인공신경망 압축을 이용한 CNN 모델의 가속 및 성능 검증 (Acceleration of CNN Model Using Neural Network Compression and its Performance Evaluation on Embedded Boards)

  • 문현철;이호영;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.44-45
    • /
    • 2019
  • 최근 CNN 등 인공신경망은 최근 이미지 분류, 객체 인식, 자연어 처리 등 다양한 분야에서 뛰어난 성능을 보이고 있다. 그러나, 대부분의 분야에서 보다 더 높은 성능을 얻기 위해 사용한 인공신경망 모델들은 파라미터 수 및 연산량 등이 방대하여, 모바일 및 IoT 디바이스 같은 연산량이나 메모리가 제한된 환경에서 추론하기에는 제한적이다. 따라서 연산량 및 모델 파라미터 수를 압축하기 위한 딥러닝 경량화 알고리즘이 연구되고 있다. 본 논문에서는 임베디트 보드에서의 압축된 CNN 모델의 성능을 검증한다. 인공지능 지원 맞춤형 칩인 QCS605 를 내장한 임베디드 보드에서 카메라로 입력한 영상에 대해서 원 CNN 모델과 압축된 CNN 모델의 분류 성능과 동작속도 비교 분석한다. 본 논문의 실험에서는 CNN 모델로 MobileNetV2, VGG16 을 사용했으며, 주어진 모델에서 가지치기(pruning) 기법, 양자화, 행렬 분해 등의 인공신경망 압축 기술을 적용하였을 때 원래의 모델 대비 추론 시간 및 분류의 정확도 성능을 분석하고 인공신경망 압축 기술의 유용성을 확인하였다.

  • PDF

안구 질환 자가 검사용 인공 신경망 학습을 위한 데이터셋(G-Dataset) 구축 방법 연구 (A Study on Creating a Dataset(G-Dataset) for Training Neural Networks for Self-diagnosis of Ocular Diseases)

  • 이혜림;유재천
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.580-581
    • /
    • 2024
  • 고령화 사회에 접어들면서 황반 변성과 당뇨 망막 병증 등 시야결손을 동반하는 안구 질환의 발병률은 증가하지만 이러한 질환의 조기 발견에 인공지능을 접목시킨 연구는 부족한 실정이다. 본 논문은 안구 질환 자가 검사용 인공 신경망을 학습시키기 위한 데이터 베이스 구축 방법을 제안한다. MNIST와 CIFAR-10을 합성하여 중첩 이미지 데이터셋인 G-Dataset을 생성하였고, 7개의 인공신경망에 학습시켜 최종적으로 90% 이상의 정확도를 얻음으로 그 유효성을 입증하였다. G-Dataset을 안구 질환 자가 검사용 딥러닝 모델에 학습시켜 모바일 어플에 적용하면 사용자가 주기적인 검사를 통해 안구 질환을 조기에 진단하고 치료할 수 있을 것으로 기대된다.

하천 범람 예측을 위한 인공지능 수위 예측 시스템 설계 (Design of Artificial Intelligence Water Level Prediction System for Prediction of River Flood)

  • 박세현;김현재
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.198-203
    • /
    • 2020
  • 본 논문에서는 소규모 강의 범람 예측을 위한 인공 수위 예측 시스템을 제안한다. 강의 수위 예측은 홍수 피해를 줄일 수 있는 대책이 될 수 있다. 그러나 하천 범람에 영향을 미치는 강 또는 강우의 고유 특성으로 인해 범람 모델을 구축하기가 어렵다. 일반적으로 하류 수위는 상류의 인접한 수위에 영향을 받는다. 따라서 본 연구에서는 측정 지점에서 수위를 예측하기 위해 두 개의 상류 측정 지점의 수위를 순환신경망(LSTM)을 사용하여 인공 지능 모델을 구축했다. 제안 된 인공 지능 시스템은 수위 측정기를 설계하고 Nodejs를 사용하여 서버를 구축했다. 제안 된 신경망 하드웨어 시스템은 실제 강에서 6시간마다 수위를 잘 예측함을 알 수 있었다.

인공지능 기술을 활용한 지진해일 범람구역 산정 (Evaluation of tsunami inundation using artificial intelligence)

  • 김창희;송민종;김병호;조용식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.216-216
    • /
    • 2021
  • 해저지진, 해저붕괴 및 해저화산분출 등에 발생되는 지진해일은 파장이 수십에서 수백 km에 이르는 장파로서 에너지 손실없이 먼 거리를 전파할 수 있으며, 수심이 상대적으로 얕은 해안가에 도달하면 범람에 의해 인명 및 재산피해를 야기시킬 수 있다. 예를 들어, 2004년 12월 26일에 발생한 수마트라 지진해일은 약 30만명의 인명피해와 약 10조원의 재산피해를 가져왔으며, 2011년 3월 11일에 발생한 동일본 지진해일은 약 2만명의 인명피해와 약 330조의 재산피해를 유발시켰다. 더욱이, 지진해일에 의해 폭발한 후쿠시마 원자력발전소에서의 방사능 유출은 10년이 지난 현재도 생태계 교란, 방사능 피폭 등의 피해를 일으키고 있다. 우리나라도 1983년 5월 26일 발생한 동해 중부지진해일에 의해 삼척시 임원항 및 인근에서 인명피해(1명 사망, 2명 실종)와 약 2억원의 재산피해가 발생하였다. 최근, 4차 산업혁명으로서 빅데이터를 기반으로 한 다양한 인공지능기술이 개발되고 있으며, 많은 분야에서 이 기술을 적용하고자 노력하고 있다. 특히, 과학 및 공학분야에서도 이를 융합하는 연구 및 활용하는 사례가 증가하고 있다. 본 연구에서는 1983년 발생한 중부지진해일에 의해 인명 및 재산피해가 발생한 임원항을 대상으로 지진해일 수치모형실험을 수행하며, 수치모형실험 결과를 토대로 인공지능 모델 중 합성신경망 (Convolution Neural Network)을 활용하여 인공지능을 통한 지진해일 범람구역을 산정 및 평가하고자 한다.

  • PDF