• Title/Summary/Keyword: 인공 지능 신경망

Search Result 597, Processing Time 0.033 seconds

유전자 알고리즘을 활용한 인공지능 예측모형간 결합 기법: 주식시장에의 응용

  • Ahn, Hyeon-Cheol;Lee, Hyeong-Yong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.141-148
    • /
    • 2008
  • 각종 인공지능 기법들을 활용하여, 주식시장의 흐름을 예측하려는 연구가 지금까지 많은 인공지능 및 금융공학의 연구자들에 의해 시도되어 왔으며, 그 결과 다양한 인공지능 기법들이 예측 방법론으로 제시되어 왔다. 이런 가운데 서로 다른 예측모형들이 산출하는 예측결과를 종합 - 보완하는 결합기법에 관련된 연구가 90년대 후반부터 오늘날까지 꾸준하게 발표되고 있다. 본 연구 역시 유전자 알고리즘 기반의 새로 인공지능 예측모형간 결합기법을 제시하고 있다. 다만, 기존의 연구모형들이 각 개별모형 결과의 상대적 가중치에 초점을 맞추고 있었다면, 본 연구의 제안모형은 등락을 판단하는데 활용되는 임계치까지 유전자 알고리즘을 이용해 동시에 최적화하도록 설계되어 있다는 점에서 차별화된다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 지난 1998년부터 2007년까지의 KOSPI 지수 등락 예측을 위해 구축된 로지스틱 회귀모형, 인공신경망, SVM모형의 결과들을 제안모형을 이용해 결합하였다. 그 결과, 예측력 향상에 본 연구의 제안모형이 기여 할 수 있음을 확인 할 수 있었다.

  • PDF

A Coevolution of Artificial-Organism Using Classification Rule And Enhanced Backpropagation Neural Network (분류규칙과 강화 역전파 신경망을 이용한 이종 인공유기체의 공진화)

  • Cho Nam-Deok;Kim Ki-Tae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.349-356
    • /
    • 2005
  • Artificial Organism-used application areas are expanding at a break-neck speed with a view to getting things done in a dynamic and Informal environment. A use of general programming or traditional hi methods as the representation of Artificial Organism behavior knowledge in these areas can cause problems related to frequent modifications and bad response in an unpredictable situation. Strategies aimed at solving these problems in a machine-learning fashion includes Genetic Programming and Evolving Neural Networks. But the learning method of Artificial-Organism is not good yet, and can't represent life in the environment. With this in mind, this research is designed to come up with a new behavior evolution model. The model represents behavior knowledge with Classification Rules and Enhanced Backpropation Neural Networks and discriminate the denomination. To evaluate the model, the researcher applied it to problems with the competition of Artificial-Organism in the Simulator and compared with other system. The survey shows that the model prevails in terms of the speed and Qualify of learning. The model is characterized by the simultaneous learning of classification rules and neural networks represented on chromosomes with the help of Genetic Algorithm and the consolidation of learning ability caused by the hybrid processing of the classification rules and Enhanced Backpropagation Neural Network.

Trends in Deep-neural-network-based Dialogue Systems (심층 신경망 기반 대화처리 기술 동향)

  • Kwon, O.W.;Hong, T.G.;Huang, J.X.;Roh, Y.H.;Choi, S.K.;Kim, H.Y.;Kim, Y.K.;Lee, Y.K.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.55-64
    • /
    • 2019
  • In this study, we introduce trends in neural-network-based deep learning research applied to dialogue systems. Recently, end-to-end trainable goal-oriented dialogue systems using long short-term memory, sequence-to-sequence models, among others, have been studied to overcome the difficulties of domain adaptation and error recognition and recovery in traditional pipeline goal-oriented dialogue systems. In addition, some research has been conducted on applying reinforcement learning to end-to-end trainable goal-oriented dialogue systems to learn dialogue strategies that do not appear in training corpora. Recent neural network models for end-to-end trainable chit-chat systems have been improved using dialogue context as well as personal and topic information to produce a more natural human conversation. Unlike previous studies that have applied different approaches to goal-oriented dialogue systems and chit-chat systems respectively, recent studies have attempted to apply end-to-end trainable approaches based on deep neural networks in common to them. Acquiring dialogue corpora for training is now necessary. Therefore, future research will focus on easily and cheaply acquiring dialogue corpora and training with small annotated dialogue corpora and/or large raw dialogues.

A Study on Performance Improvement of Recurrent Neural Networks Algorithm using Word Group Expansion Technique (단어그룹 확장 기법을 활용한 순환신경망 알고리즘 성능개선 연구)

  • Park, Dae Seung;Sung, Yeol Woo;Kim, Cheong Ghil
    • Journal of Industrial Convergence
    • /
    • v.20 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • Recently, with the development of artificial intelligence (AI) and deep learning, the importance of conversational artificial intelligence chatbots is being highlighted. In addition, chatbot research is being conducted in various fields. To build a chatbot, it is developed using an open source platform or a commercial platform for ease of development. These chatbot platforms mainly use RNN and application algorithms. The RNN algorithm has the advantages of fast learning speed, ease of monitoring and verification, and good inference performance. In this paper, a method for improving the inference performance of RNNs and applied algorithms was studied. The proposed method used the word group expansion learning technique of key words for each sentence when RNN and applied algorithm were applied. As a result of this study, the RNN, GRU, and LSTM three algorithms with a cyclic structure achieved a minimum of 0.37% and a maximum of 1.25% inference performance improvement. The research results obtained through this study can accelerate the adoption of artificial intelligence chatbots in related industries. In addition, it can contribute to utilizing various RNN application algorithms. In future research, it will be necessary to study the effect of various activation functions on the performance improvement of artificial neural network algorithms.

Recurrent Neural Network based Prediction System of Agricultural Photovoltaic Power Generation (영농형 태양광 발전소에서 순환신경망 기반 발전량 예측 시스템)

  • Jung, Seol-Ryung;Koh, Jin-Gwang;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.825-832
    • /
    • 2022
  • In this paper, we discuss the design and implementation of predictive and diagnostic models for realizing intelligent predictive models by collecting and storing the power output of agricultural photovoltaic power generation systems. Our model predicts the amount of photovoltaic power generation using RNN, LSTM, and GRU models, which are recurrent neural network techniques specialized for time series data, and compares and analyzes each model with different hyperparameters, and evaluates the performance. As a result, the MSE and RMSE indicators of all three models were very close to 0, and the R2 indicator showed performance close to 1. Through this, it can be seen that the proposed prediction model is a suitable model for predicting the amount of photovoltaic power generation, and using this prediction, it was shown that it can be utilized as an intelligent and efficient O&M function in an agricultural photovoltaic system.

Face Frontalization Model with A.I. Based on U-Net using Convolutional Neural Network (합성곱 신경망(CNN)을 이용한 U-Net 기반의 인공지능 안면 정면화 모델)

  • Lee, Sangmin;Son, Wonho;Jin, ChangGyun;Kim, Ji-Hyun;Kim, JiYun;Park, Naeun;Kim, Gaeun;Kwon, Jin young;Lee, Hye Yi;Kim, Jongwan;Oh, Dukshin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.685-688
    • /
    • 2020
  • 안면 인식은 Face ID를 비롯하여 미아 찾기, 범죄자 추적 등의 분야에 도입되고 있다. 안면 인식은 최근 딥러닝을 통해 인식률이 향상되었으나, 측면에서의 인식률은 정면에 비해 특징 추출이 어려우므로 비교적 낮다. 이런 문제는 해당 인물의 정면이 없고 측면만 존재할 경우 안면 인식을 통한 신원확인이 어려워 단점으로 작용될 수 있다. 본 논문에서는 측면 이미지를 바탕으로 정면을 생성함으로써 안면 인식을 적용할 수 있는 상황을 확장하는 인공지능 기반의 안면 정면화 모델을 구현한다. 모델의 안면 특징 추출을 위해 VGG-Face를 사용하며 특징 추출에서 생길 수 있는 정보 손실을 막기 위해 U-Net 구조를 사용한다.

Emotion Detection Model based on Sequential Neural Networks in Smart Exhibition Environment (스마트 전시환경에서 순차적 인공신경망에 기반한 감정인식 모델)

  • Jung, Min Kyu;Choi, Il Young;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.109-126
    • /
    • 2017
  • In the various kinds of intelligent services, many studies for detecting emotion are in progress. Particularly, studies on emotion recognition at the particular time have been conducted in order to provide personalized experiences to the audience in the field of exhibition though facial expressions change as time passes. So, the aim of this paper is to build a model to predict the audience's emotion from the changes of facial expressions while watching an exhibit. The proposed model is based on both sequential neural network and the Valence-Arousal model. To validate the usefulness of the proposed model, we performed an experiment to compare the proposed model with the standard neural-network-based model to compare their performance. The results confirmed that the proposed model considering time sequence had better prediction accuracy.

An Implementation of Neural Networks Intelligent Characters for Fighting Action Games (대전 액션 게임을 위한 신경망 지능 캐릭터의 구현)

  • Cho, Byeong-Heon;Jung, Sung-Hoon;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.383-389
    • /
    • 2004
  • This paper proposes a method to provide intelligence for characters in fighting action games by using a neural network. Each action takes several time units in general fighting action games. Thus the results of a character's action are not exposed immediately but some time units later. To design a suitable neural network for such characters, it is very important to decide when the neural network is taught and which values are used to teach the neural network. The fitness of a character's action is determined according to the scores. For learning, the decision causing the score is identified, and then the neural network is taught by using the score change, the previous input and output values which were applied when the decision was fixed. To evaluate the performance of the proposed algorithm, many experiments are executed on a simple action game (but very similar to the actual fighting action games) environment. The results show that the intelligent character trained by the proposed algorithm outperforms random characters by 3.6 times at most. Thus we can conclude that the intelligent character properly reacts against the action of the opponent. The proposed method can be applied to various games in which characters confront each other, e.g. massively multiple online games.

신경망모형을 이용한 아파트 가격 모형에 관한 연구

  • Hong, Han-Kook
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.220-226
    • /
    • 2009
  • 본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 널리 이용되어 왔던 신경망모형(Neural Network Model)은 입력변수가 불완전하고 변동폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정밀하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.

  • PDF

신경망모형을 이용한 아파트 가격 모형에 관한 연구

  • Hong, Han-Kook
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.379-385
    • /
    • 2010
  • 본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 멀리 이용되어 왔던 신경망모형 (Neural Network Model)은 입력변수가 불완전하고 변동 폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정말하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.

  • PDF