• Title/Summary/Keyword: 인공 지능 신경망

Search Result 597, Processing Time 0.026 seconds

A Study on the Intelligent 3D Foot Scanning System (인공지능형 삼차원 Foot Scanning 시스템에 관한 연구)

  • 김영탁;박주원;탁한호;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.391-395
    • /
    • 2004
  • 본 논문은 맞춤형 신발제작을 위하여 맞춤형 신발에 필요한 화형제작용 데이터를 위한 3차원 측정 장치를 통해 획득한 발의 형상을 인공지능 기법을 기반으로 하는 최적화된 형상을 복원하는 방법을 제시하고자 한다. 본 연구를 위해 개발된 시스템은 PC를 기반으로 하는 기존의 3차원측정 방식을 이용하여 상, 하, 좌, 우로 각각 장착된 8대의 CCD 카메라와 4대의 레이져를 통해 화형 및 발의 형상 데이터를 획득한다 획득된 데이터들은 인공지능 기법을 이용한 영상처리 알고리즘으로 처리되며, 처리 결과는 기존의 지능 기법을 도입하지 않은 시스템에 비해 노이즈제거 특성이 향상되었고, 후처리과정을 간소화 할 수 있다. 따라서 본 논문에서는 3차원 측정을 위해 기구적인 부분과 하드웨어적인 부분의 시스템을 구성하고, 데이터 처리용 소프트웨어에서 입력영상의 전처리 과정 중 영상의 이진화 단계에서 임계값을 결정하기 위하여 간단한 신경망을 사용하였으며, 이에 대한 결과를 제시하고자 한다.

  • PDF

Developing an Adaptive Dialogue System Using External Information (외부 상황 정보를 활용하는 적응적 대화 모델의 구현)

  • Jang, Jin Yea;Jung, Minyoung;Park, Hanmu;Shin, Saim
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.456-459
    • /
    • 2019
  • 대화 행위는 단순한 발화 문장들의 교환을 넘어 발화자들의 다양한 주변 정보를 고려한 종합적인 판단의 결과로 볼 수 있다. 본 논문은 여섯 가지 유형의 외부 상황 정보를 기반으로 적응적 발언을 생성하는 딥러닝 기반 대화 모델을 소개한다. 직접 구축한 상황 정보들이 태깅된 대화 데이터를 바탕으로, 외부 상황 정보를 사용자 발화와 더불어 활용하는 다양한 구조의 신경망 구조를 가지는 모델과 더불어 외부 상황 정보를 사용하지 않는 모델과의 성능에 대해 비교한다. 실험 결과들은 대화 모델의 발화 생성에 있어서 상황 정보 활용의 중요성을 보여준다.

  • PDF

Trend Analysis of Korea Papers in the Fields of 'Artificial Intelligence', 'Machine Learning' and 'Deep Learning' ('인공지능', '기계학습', '딥 러닝' 분야의 국내 논문 동향 분석)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.4
    • /
    • pp.283-292
    • /
    • 2020
  • Artificial intelligence, which is one of the representative images of the 4th industrial revolution, has been highly recognized since 2016. This paper analyzed domestic paper trends for 'Artificial Intelligence', 'Machine Learning', and 'Deep Learning' among the domestic papers provided by the Korea Academic Education and Information Service. There are approximately 10,000 searched papers, and word count analysis, topic modeling and semantic network is used to analyze paper's trends. As a result of analyzing the extracted papers, compared to 2015, in 2016, it increased 600% in the field of artificial intelligence, 176% in machine learning, and 316% in the field of deep learning. In machine learning, a support vector machine model has been studied, and in deep learning, convolutional neural networks using TensorFlow are widely used in deep learning. This paper can provide help in setting future research directions in the fields of 'artificial intelligence', 'machine learning', and 'deep learning'.

Simulation of Descartes′s Human thinking model by Multi-Threading (멀티쓰레딩을 이용한 데카르트 사유 모델의 시뮬레이션)

  • 한혜민
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.256-258
    • /
    • 2002
  • 지금가지 인지과학적인 연구는 주로 인간의 지능이나 신경망, 그리고 언어를 주 연구 대상으로 다루어 왔다. 그런데 인공지능은 철학의 고유영역에 속하던 많은 문제를 다루게 되었고, 그 주제들을 다뤄온 철학적 방법들을 여러 측면에서 채용하고 있다. 따라서 인지과학과 철학이라는 두 분야가 접목되어야 할 필요성이 있을 것이다. 본 연구는 위에 바탕을 두어 1) 인간 사유에 대한 데카르트의 성찰(cogito ergo sum)을 소개하고, 2) 이를 MFC를 이용한 Multi-threading으로 구현하고 실험하여, 3) 인간의 철학적 사유체계와 사고 중 이성과 오성에 관한 부분은 인공적으로 구현 가능하다는 사실과 응용 가능성을 검토하도록 한다.

  • PDF

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.

Implementation of Probabilistic Predictive Artificial Intelligence for Remote Diagnosis in Aging Society (고령화 사회 원격 진료를 위한 확률론적 예측인공지능 연구)

  • Jeong, Jae-Seung;Ju, Hyunsu
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.6
    • /
    • pp.3-13
    • /
    • 2020
  • 저출산 고령화 사회로의 진입은 대한민국뿐만 아니라 전 세계적으로 많은 사회 문제를 야기하고 있다. 그 중에서 고령 인구 증가로 인한 의료 수요 증가와 이를 뒷받침 할 의료인력 부족은 곧 다가올 사회문제이다. 4차 산업 혁명으로 인해 다양한 사회문제에 대한 혁신적인 해법들이 제시되고 있는데, 본 기고문에서는 다가올 고령화 사회에서 의료인력 부족 등에 의한 해결법으로 원격의료 지원을 위한 인공지능 활용을 다루고자 한다. 병 진단 및 예측을 위한 여러 가지 인공지능 알고리즘은 이미 많이 개발 되어 있으나, 일반적으로 딥러닝에 많이 쓰이는 인공신경망 구조인 합성곱 뉴럴네트워크(convolution neural network)나 기존 퍼셉트론(perceptron) 구조에서 벗어나 확률론적 인공신경망 중에 하나인 베이지안 뉴럴네트워크(Bayesian neural network)를 다루고자 한다. 그중에서 연산효율적이며 뉴로모픽 하드웨어로 구현 가능성이 높고 실제 진단 예측(diagnosis prediction) 문제 해결에 강점을 보이는 알고리즘으로써 naive Bayes classifer를 활용한 연구를 소개하고자 한다.

Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology (한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론)

  • Solee Im;Wonjun Lee;Gary Geunbae Lee;Yunsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF

A Self-Organizing Map Neural Network Approach to Segmenting Knowledge Management Type of Venture Businesses in KOSDAG (자기조직화 지도(SOM) 인공신경망 모형을 이용한 벤쳐기업의 지식경영 유형 세분화에 관한 연구-코스닥 상장기업을 대상으로-)

  • 이건창;권순재;이광용
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.95-115
    • /
    • 2001
  • We propose classifying the venture firms into four types of knowledge management. For this purpose, we collected questionnaire data from 101 venture firms listed in KOSDAQ, and applied a unsupervised neural network algorithm SOM to obtain four clusters representing knowledge management types-High Tech Type, Organizational Knowledge Type, Information Technology Type, and Beginner Type. Based on the results, we conclude that the venture firms listed in KOSDAQ should first know its own knowledge management type, and then apply appropriate strategies to take advantage of the knowledge management impacts on the competitiveness.

  • PDF

SOHO Bankruptcy Prediction Using Modified Bagging Predictors (Modified Bagging Predictors를 이용한 SOHO 부도 예측)

  • Kim Seung-Hyeok;Kim Jong-U
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.176-182
    • /
    • 2006
  • 본 연구에서는 기존 Bagging Predictors에 수정을 가한 Modified Bagging Predictors를 이용하여 SOHO 에 대한 부도예측 모델을 제시한다. 대기업 및 중소기업에 대한 기압부도예측 모델에 대한 많은 선행 연구가 있어왔지만 SOHO 만의 기업부도예측 모델에 관한 연구는 미비한 상태이다. 금융기관들의 대출심사시 대기업 및 중소기업과는 달리 SOHO에 대한 대출심사는 이직은 체계화되지 못한 채 신용정보점수 등의 단편적인 요소를 사용하고 있는 것에 현실이고 이에 따라 잘못된 대출로 안한 금융기관의 부실화를 초래할 위험성이 크다. 본 연구에서는 실제 국내은행의 SOHO 데이터 집합이 사용되었다. 먼저 기업부도 예측 모델에서 우수하다고 연구되어진 인공신경망과 의사결정나무 추론 기법을 적용하여 보았지만 만족할 만한 성과를 이쓸어내지 못하여, 기존 기업부도예측 모델연구에서 적용이 미비하였던 Bagging Predictors와 이를 개선한 Modified Bagging Predictors를 제시하고 이를 적용하여 보았다. 연구결과,; SOHO 부도예측에 있어서 본 연구에서 제시한 Modified Bagging Predictors 가 인공신경망과 Bagging Predictors등의 기존 기법에 비해서 성과가 향상됨을 알 수 있었다. 제시된 Modified Bagging Predictors의 유용성을 확인하기 위해서 추가적으로 대수의 공개 데이터 집합을 활용하여 성능을 비교한 결과 Modified Bagging Predictors 가 기존의 Bagging Predictors 에 비해 일관적으로 성과가 향상됨을 알 수 있었다.

  • PDF