• 제목/요약/키워드: 인공 신경 회로망

검색결과 57건 처리시간 0.028초

PC 수직 접합부의 극한 전단 내력 예측에 대한 인공 신경 회로망의 적용 (Application of Artificial Neural Networks to Predict Ultimate Shear Capacity of PC Vertical Joints)

  • 김택완;이승창;이병해
    • 전산구조공학
    • /
    • 제9권2호
    • /
    • pp.93-101
    • /
    • 1996
  • 인공 신경회로망은 인간의 뇌를 전산 모델로 구현한 것으로 상호 연결된 많은 정보 처리 유니트들로 구성되어 있으며, 이를 기초로 논리적인 추론을 수행할 수 있다. 특히, 신경망은 비선형 변수를 많이 포함하고 있는 복잡한 문제 해결에서 더욱 효과적이다. 신경망의 이러한 기능으로 인해 구조분야에서는 비선형적인 각종 구조실험의 결과예측이나 구조계획 그리고 최적 설계에 응용되고 있는 추세이다. 본 논문에서는 인공 신경 회로망의 기본 이론을 설명하고, 현재까지 정립되고 있지 않은 대형 콘크리트 판넬간 수직 접합부의 최대 전단 내력 예측에 기존의 제안식과 인공 신경 회로망의 예측 결과를 비교하여 신경망의 적용가능성을 검토하고자 한다.

  • PDF

간단한 비선형 시냅스 회로를 이용한 MEBP 학습 회로의 구현 (Implementation of ME8P Learning Circuitry With Simple Nonlinear Synapse Circuit)

  • 조화현;채종석;이은상;박진성;최명렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2977-2979
    • /
    • 1999
  • 본 논문에서는 MEBP(Modified Error Back-Propagation) 학습 규칙을 간단한 비선형 회로를 이용하여 구현하였다. 인공 신경 회로망(ANNs : Artificial Neural Networks)은 많은 수의 뉴런을 필요하기 때문에 표준 CMOS 기술을 이용하는 간단한 비선형 시냅스(synapse) 회로는 인공 신경 회로망 구현에 적합하다. 학습회로는 비선형 시냅스 회로. 시그모이드(sigmoid) 회로. 그리고 선형 곱셈기로 구성되어 있다. 학습 회로의 출력은 각 입력 패턴에 따라 유일한 값으로 결정되어진다. 제안한 학술회로를 $2{\times}2{\times}1$$2{\times}3{\times}1$ 다층 feedforward 신경 회로망 모델에 적용하였다. MEBP 하드웨어 구현은 HSPICE 회로 시뮬레이터를 이용하여 검증하였다. 제안한 학술 회로는 on-chip 학습회로를 포함한 대규모 신경회로망 구현에 매우 적합하리라 예상된다.

  • PDF

인공신경망 및 통계적 방법을 이용한 오존 형성의 예측 (Prediction of Ozone Formation Based on Neural Network and Stochastic Method)

  • 오세천;여영구
    • 청정기술
    • /
    • 제7권2호
    • /
    • pp.119-126
    • /
    • 2001
  • 인공신경 회로망과 통계적 방법을 이용하여 오존 형성의 예측에 관한 연구를 수행하였다. 파라미터 평가방법으로는 실시간 파라미터를 평가하기 위하여 ELS 및 RML 방법이 사용되었으며 오존 형성의 모델로는 ARMAX 모델을 사용하였다. 또한 3층 구조를 갖는 인공신경 회로망 방법을 이용하여 오존 형성의 예측 시험을 수행하였으며 본 연구에 사용된 통계적 방법의 성능을 평가하기 위하여 오존 형성의 예측결과를 실제 자료와 비교 분석을 하였다. 실제 자료와의 비교를 통하여 파라미터 평가 방법 및 인공신경 회로망 방법에 근거한 예측방법이 제한된 예측 구간 내에서 만족할 만한 성능을 보임을 확인할 수 있었다.

  • PDF

뇌과학 연구에서 셀룰라 오토마타의 연구 현황 (Research Trend of Cellular Automata in Brain Science Research)

  • 강훈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.441-447
    • /
    • 1999
  • 본 논문은 복잡 적응 시스템의 분석 및 모델링을 위해, 인공생명의 기본 패러다임인 셀룰라 오토마타를 선택하여, 무정형의 구조를 가지며 투명한 자료 전파 특성을 갖는 셀룰라 신경 회로망의 설계하고 개발하는데 중점을 두었다. 우선, 신경 회로망의 불규칙한 구조를 발생학적으로 다루어 무정형의 은닉층을 생성하고, 다윈의 진화론을 적용하여 구조적 진화 및 선택을 통해 최적화된 신경 회로망을 설계하였다. 주변 셀의 상태를 감지하여 자신의 상태를 수정해나가는 방식의 셀룰라 오토마타의 투명한 신호 전파 모델로 자료 및 오차의 역전파에 적용하도록 고안하였고, 라마르크의 용불용설을 활용한 오차의역전파 학습 알고리즘을 유도하였다. 이러한 복잡 적응계의 학습 과정을 유도하여 시뮬레이션에서 그 타당성을 입증하였다. 시뮬레이션에서는 신경 회로망의 XOR 문제와 다중 입력 다중 출력 함수에 대한 근사화 문제를 풀었다.

  • PDF

와렌 트러스 설계에의 신경망 적용에 관한 연구 (A Study on Adaptation of Neural Network to Warren Truss Design)

  • 신동철;이승창;조영상
    • 한국강구조학회 논문집
    • /
    • 제15권4호통권65호
    • /
    • pp.413-422
    • /
    • 2003
  • 구조 설계를 위해 초기 부재를 가정할 때나 건축 실무에서 개산 견적을 계산할 때 기술자의 직관이나 비슷한 조건의 기존 설계 평균값을 사용하고 있으나 설계 조건은 모두 다르기 때문에 큰 오차가 발생할 수밖에 없다. 이러한 문제점을 해결하기 위해서 확률론적인 절차가 내재되어 있어 불확실성을 다룰 수 있는 인공 신경 회로망의 이용하여 와렌 트러스를 설계하므로써 적용성을 평가하였다. 제안된 신경망 설계변수값와 구조설계 단계에 따라 다양한 와렌 트러스를 설계하여 MIDAS 프로그램 설계결과의 10% 오차 이내로 근사 설계를 하므로써 모델의 타당성을 검증하였다. 제안된 모델은 약간의 오차를 포함하지만 적은 시간과 노력으로 신뢰할 수 있는 설계 결과를 얻을 수 있으며, 부재 테이블을 사용하는 비선형 관계의 구조설계에도 적용 가능한 특성을 가지고 있다.

스마트 그리드 배전계통에서 인공신경회로망을 이용한 DSP 기반 실시간 고장 판단 방법론 기초 연구 (DSP based Real-Time Fault Determination Methodology using Artificial Neural Network in Smart Grid Distribution System)

  • 김진언;이유림;최정우;노병훈;고윤석
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.817-826
    • /
    • 2023
  • 본 논문에서는 스마트 그리드 배전 계통에서 선로상의 고장으로부터 계통을 보호하기 위한 인공 신경 회로망을 기반으로 하는 고장 판단 방법론을 제안하였다. 제안된 방법론에서는 먼저 전류 실효값 크기를 기반으로 일반 고장 여부를 판단하고 다음, 정상 전류로 판단되는 경우 인공 신경 회로망을 기반으로 하는 normal/HIF classifier를 이용하여 고 임피던스 지락 고장 여부를 판단하도록 설계하였다. 반복적인 DSP 모듈 기반 알고리즘 검증 시험들 중에서, 실효 값 크기가 최소 동작전류보다 작은 정상 전류 파형 시험인 경우에 normal/HIF classifier가 전류 파형을 정상상태로 인식하여 부 동작하였으며, 반면에, 저 임피던스 고장의 경우는 고장 상태로 인식하여 정해진 절차에 따라 재폐로 동작을 보임으로써 제안된 방법론의 유효성을 확인할 수 있었다.

적응형 AE신호 형상 인식 프로그램 개발자 회전체 금속 접촉부 이상 분류에 관한 적용 연구 (Development of Adaptive AE Signal Pattern Recognition Program and Application to Classification of Defects in Metal Contact Regions of Rotating Component)

  • 이강용;이종명;김준섭
    • 비파괴검사학회지
    • /
    • 제15권4호
    • /
    • pp.520-530
    • /
    • 1996
  • 본 연구에서는 음향방출법을 이용하여 로터리 압축기의 인공 결함을 분류하기 위한 연구를 수행하였다. 이를 위해 프로그램을 개발하였고 선형 분류기, 경험적 Bayesian 분류기, 신경 회로망 분류기를 함께 사용하여 비교하였다. 그 결과 신경 회로망 분류기가 인식률 면에서 유리하였으며 신경 회로망 분류기의 경우 99%이상의 인식률을 얻을 수 있었다.

  • PDF

신경망에 의한 외란 관측을 통한 3축 안정화 인공위성의 자세제어 (3-axis stabilized spacecraft attitude control by neural network disturbance observer)

  • 한기혁;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.1-1
    • /
    • 2000
  • 본 논문에서는 3축이 연성되어 비선형 운동 방정식으로 표현되는 3축 안정화 인공위성 시스뎀에 입릭외란과 시스템의 불확실성이 존재할 경우에도 자제 정밀도를 유지하는 제어기를 설계한다. 비선헝 운동 방정식으로 표현되는 운동 방정식을 선형화하고 PID제어기를 구성하였다 선형화에 의한 시스템의 불확실성과 입력 외란을 신경회로망으로 추정하여 외란의 엉향을 제거하도록 구성된 PR제어기의 제어입력을 수정한다 수정된 제어입력은 외란을 상쇠시켜 시스템 출력에서 외란의 효과를 제거하게 된다. 신경회로망은 제어입력과 시스템 출력, 기준 운동 방정식간의 관계를 이용하여 외간과 시스템의 불확실성을 추정하며, 역전파 알고리즘을 사용한 학습 알고리즘으로 신경 회로망을 교육한다. 제안된 신경회로망을 이용한 외란 제거 제어기는 시뮬레이션을 통하여 자세 정밀도의 향상을 검증한다

인공 신경 회로망을 이용한 핵물질 거동 감시 시스템 개발 (Continuous Surveillance and Diagnostics System Using Neural Network)

  • 최재형;한명철;박영수;김호동;홍종숙
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1182-1185
    • /
    • 1995
  • This paper presents a novel technology for unattented continuous monitoring of radioactive material in hot cell environments. In this monitoring system, the surveillance camera data and NDA data are time synchronized and integrated into the same dimension through data processing. The integrated information is then fed into a neural network to generate diagnostics through data processing. the integrated information of the concept is tested for a spent nuclear fuel transprotation in an operational hot cell at KAERI. The presented integral part of the multi-sensory system and the analytical paradigm may provide an effective technologyical alternative for safeguarding new conceptual hot cell facilities, namely the Dupic facility.

  • PDF