• Title/Summary/Keyword: 인공 신경회로망

Search Result 154, Processing Time 0.02 seconds

Learning Control of Inverted Pendulum Using Neural Networks (신경회로망을 이용한 도립전자의 학습제어)

  • Lee, Jea-Kang;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.99-107
    • /
    • 2004
  • This paper considers reinforcement learning control with the self-organizing map. Reinforcement learning uses the observable states of objective system and signals from interaction of the system and the environments as input data. For fast learning in neural network training, it is necessary to reduce learning data. In this paper, we use the self-organizing map to parition the observable states. Partitioning states reduces the number of learning data which is used for training neural networks. And neural dynamic programming design method is used for the controller. For evaluating the designed reinforcement learning controller, an inverted pendulum of the cart system is simulated. The designed controller is composed of serial connection of self-organizing map and two Multi-layer Feed-Forward Neural Networks.

  • PDF

Performance Comparision of Multilayer Perceptron Nueral Network and Maximum Likelihood Classifier for Category Classification (카테고리분류를 위한 다층퍼셉트론 신경회로망과 최대유사법의 성능비교)

  • Lim, Tae-Hun;Seo, Yong-Su
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.137-147
    • /
    • 1996
  • In this paper, the performances between maximum likelihood classifier based on statistical classification and multilayer perceptrons based on neural network approaches were compared and evaluated Experimental results from both neural network method and statistical method are presented. In addition, the nature of two different approches are analyzed based on the experiments.

  • PDF

Intelligent Diagnosis of Grinding State Using AE and Power Signals (음향방출과 동력 신호에 의한 인공지능형 연삭상태 진단)

  • Kwak, J.S.;Ha, M.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • 연삭가공은 나노스케일(Nano-scale)의 미소한 입자 절삭날을 이용한 가공으로, 공작물의 표면을 경면(Mirror surface)으로 가공할 수 있어 제품의 최종 마무리공정으로 사용되어 왔다. 그러나 연삭공정에 있어서는 공구(연삭숫돌)의 수명이 다하거나 가공계(Machining system)가 불안정해지면 채터진동과 연삭버닝 등의 현상이 발생하여 가공물의 표면품위를 저하시키는 요인으로 작용하고 있다. 따라서 본 연구는 원통플른지 연삭공정을 대상으로 공작물에서 발생하는 음향방출 신호와 연삭기 주축 모터의 동력 신호를 연삭가공 중에 검출하고, 이를 신경회로망에 적용하여 연삭가공 상태를 진단하는 시스템을 구축하고, 그 성능을 평가하였다.

  • PDF

Neutron Flux Evaluation on the Reactor Pressure Vessel by Using Neural Network (인공신경 회로망을 이용한 압력용기 중성자 조사취화 평가)

  • Yoo, Choon-Sung;Park, Jong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.168-177
    • /
    • 2007
  • A neural network model to evaluate the neutron exposure on the reactor pressure vessel inner diameter was developed. By using the three dimensional synthesis method described in Regulatory Guide 1.190, a simple linear equation to calculate the neutron spectrum on the reactor pressure vessel was constructed. This model can be used in a quick estimation of fast neutron flux which is the most important parameter in the assessment of embrittlement of reactor pressure vessel. This model also used in the selection of an optimum core loading pattern without the neutron transport calculation. The maximum relative error of this model was less than 3.4% compared to the transport calculation for the calculations from cycle 1 to cycle 23 of Kori unit 1.

A Study on hardware implementing the digital switch board system within door using Artificial intelligence. (인공지능형 가정용 배전반 시스템의 구현)

  • 이주원;이재현;조병일;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.522-526
    • /
    • 1998
  • 본 논문은 가정용 배전반 시스템을 디지털식으로 구현하고, 기존의 디지털식 배전반 시스템에 없는 월 수요전력량 예측과 화재발생의 원인 중에 하나인 옥내 전선선로의 결함을 신경회로망으로 검출하여 차단하는 인공지능형 가정용 배전반 시스템을 하드웨어로 구현하고 실험하였으며, 그 결과를 제시하였다.

  • PDF

Manufacturing Line Optimization Using Artificial Neural Networks (신경회로망을 이용한 생산라인 최적화)

  • 허철회;박진희;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.79-82
    • /
    • 2001
  • 생산품을 제조하는 과정에서 처리 시간에 따른 제조 기계를 최적의 수로 결정함으로서 공정 과정에서 비효율적인 제조 기계의 활용 비율을 줄일 수 있으며, 이는 공정 과정의 비용을 최소화할 수 있는 방법 중에 하나이다. 본 논문에서는 핸드폰에 사용되는 여러 가지 모델의 배터리를 생산하는 공장의 작업 과정을 조사하고, 일정하기 않은 처리 시간과 작업에 필요한 제조 기계를 조사하였다. 이를 인공 신경망(ANN)의 역전파 알고리즘을 이용하여 생산현장에서 효율적인 처리 시간과 공정 과정에서 생산에 적합한 기계의 수를 최적화시키는 방법을 제안한다.

  • PDF

Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network (인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석)

  • 이재성;김석기;이명철;박광석;이동수
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.455-468
    • /
    • 1998
  • For the objective interpretation of cerebral metabolic patterns in epilepsy patients, we developed computer-aided classifier using artificial neural network. We studied interictal brain FDG PET scans of 257 epilepsy patients who were diagnosed as normal(n=64), L TLE (n=112), or R TLE (n=81) by visual interpretation. Automatically segmented volume of interest (VOI) was used to reliably extract the features representing patterns of cerebral metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.

  • PDF

Application of Artificial Neural Networks to Predict Ultimate Shear Capacity of PC Vertical Joints (PC 수직 접합부의 극한 전단 내력 예측에 대한 인공 신경 회로망의 적용)

  • 김택완;이승창;이병해
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-101
    • /
    • 1996
  • An artificial neural network is a computational model that mimics the biological system of the brain and it consists of a number of interconnected processing units where it can reasonably infer by them. Because the neural network is particularly useful for evaluating systems with a multitude of nonlinear variables, it can be used in experimental results predictions, in structural planning and in optimum design of structures. This paper describes the basic theory related to the neural networks and discusses the applicability of neural networks to predict the ultimate shear capacity of the precast concrete vertical joints by comparing the neural networks with a conventional method such as regression.

  • PDF

Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 진화적 학습)

  • 심인보;윤중선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.207-210
    • /
    • 2002
  • 진화와 학습 사이의 상호 연관성을 연구하기 위해 인공 진화기법(artificial evolutionary algorithm)과 신경회로망(neural networks)을 이용한 학습 기법들이 사용되어 왔다. 신경 회로망 구조를 가지는 이동 로봇의 제어기의 구조와 파라미터를 결정하기 위한 방법으로 진화적 학습(evolutionary learning) 방법이 제안되었다. 제안된 방법에서 진화적 학습은 실제 로봇을 통해 on-line 방식으로 이루어지며, 장애물 회피 문제를 통해 유용성을 검증하고 진화 과정에 학습이 미치는 영향을 살펴보았다. 그리고 수학적으로 제시되기 힘든 진화 학습의 평가에 설계자의 개입을 허용하는 인터액티브 진화 알고리즘(interactive evolutionary algorithm)방법을 모색해 보았다.

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.