• Title/Summary/Keyword: 인공 신경망 최적화

Search Result 167, Processing Time 0.033 seconds

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

A Comparative Study of Machine Learning Algorithms Based on Tensorflow for Data Prediction (데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구)

  • Abbas, Qalab E.;Jang, Sung-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.71-80
    • /
    • 2021
  • The selection of an appropriate neural network algorithm is an important step for accurate data prediction in machine learning. Many algorithms based on basic artificial neural networks have been devised to efficiently predict future data. These networks include deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gated recurrent unit (GRU) neural networks. Developers face difficulties when choosing among these networks because sufficient information on their performance is unavailable. To alleviate this difficulty, we evaluated the performance of each algorithm by comparing their errors and processing times. Each neural network model was trained using a tax dataset, and the trained model was used for data prediction to compare accuracies among the various algorithms. Furthermore, the effects of activation functions and various optimizers on the performance of the models were analyzed The experimental results show that the GRU and LSTM algorithms yields the lowest prediction error with an average RMSE of 0.12 and an average R2 score of 0.78 and 0.75 respectively, and the basic DNN model achieves the lowest processing time but highest average RMSE of 0.163. Furthermore, the Adam optimizer yields the best performance (with DNN, GRU, and LSTM) in terms of error and the worst performance in terms of processing time. The findings of this study are thus expected to be useful for scientists and developers.

Optimum Design Based on Sequential Design of Experiments and Artificial Neural Network for Enhancing Occupant Head Protection in B-Pillar Trim (센터 필라트림의 FMH 충격성능 향상을 위한 순차적 실험계획법과 인공신경망 기반의 최적설계)

  • Lee, Jung Hwan;Suh, Myung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1397-1405
    • /
    • 2013
  • The optimal rib pattern design of B-pillar trim considering occupant head protection can be determined by two methods. One is the conventional approximate optimization method that uses the statistical design of experiments (DOE) and response surface method (RSM). Generally, approximated optimum results are obtained through the iterative process by trial-and-error. The quality of results strongly depends on the factors and levels assigned by a designer. The other is a methodology derived from previous work by the authors, called the sequential design of experiments (SDOE), to reduce the trial-and-error procedure and to find an appropriate condition for using artificial neural network (ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently.

Development of Optimization Algorithm for Unconstrained Problems Using the Sequential Design of Experiments and Artificial Neural Network (순차적 실험계획법과 인공신경망을 이용한 제한조건이 없는 문제의 최적화 알고리즘 개발)

  • Lee, Jung-Hwan;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.258-266
    • /
    • 2008
  • The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.

A Study on the Application of ANN for Surface Roughness Prediction in Side Milling AL6061-T4 by Endmill (AL6061-T4의 측면 엔드밀 가공에서 표면거칠기 예측을 위한 인공신경망 적용에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.55-60
    • /
    • 2021
  • We applied an artificial neural network (ANN) and evaluated surface roughness prediction in lateral milling using an endmill. The selected workpiece was AL6061-T4 to obtain data of surface roughness measurement based on the spindle speed, feed, and depth of cut. The Bayesian optimization algorithm was applied to the number of nodes and the learning rate of each hidden layer to optimize the neural network. Experimental results show that the neural network applied to optimize using the Expected Improvement(EI) algorithm showed the best performance. Additionally, the predicted values do not exactly match during the neural network evaluation; however, the predicted tendency does march. Moreover, it is found that the neural network can be used to predict the surface roughness in the milling of aluminum alloy.

Optimization Analysis between Processing Parameters and Physical Properties of Geocomposites (지오컴포지트의 공정인자와 물성의 최적화 분석)

  • Jeon, Han-Yong;Kim, Joo-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • Geocomposites of needle punched and spunbonded nonwovens having the reinforcement and drainage functions were manufactured by use of thermal bonding method. The physical properties (e.g. tensile, tear and bursting strength, permittivity) of these multi-layered nonwovens were dependent on the processing parameters of temperatures, pressures, bonding periods etc. - in manufacturing by use of thermal bonding method. Therefore, it is very meaningful to optimize the processing parameters and physical properties of the geocomposites by thermal bonding method. In this study, an algorithm has been developed to optimize the process of the geocomposites using an artificial neural network (ANN). Geocomposites were employed to examine the effects of manufacturing methods on the analysis results and the neural network simulations have been applied to predict the changes of the nonwovens performances by varying the processing parameters.

  • PDF

Optimum Design of a Wind Power Tower to Augment Performance of Vertical Axis Wind Turbine (수직축 풍력터빈 성능향상을 위한 풍력타워 최적설계에 관한 연구)

  • Cho, Soo-Yong;Rim, Chae Hwan;Cho, Chong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.177-186
    • /
    • 2019
  • Wind power tower has been used to augment the performance of VAWT (Vertical Axis Wind Turbine). However, inappropriately designed wind power tower could reduce the performance of VAWT. Hence, an optimization study was conducted on a wind power tower. Six design variables were selected, such as the outer radius and the inner radius of the guide wall, the adoption of the splitter, the inner radius of the splitter, the number of the guide wall and the circumferential angle. For the objective function, the periodic averaged torque obtained at the VAWT was selected. In the optimization, Design of Experiment (DOE), Genetic Algorithm (GA), and Artificial Neural Network (ANN) have been applied in order to avoid a localized optimized result. The ANN has been continuously improved after finishing the optimization process at each generation. The performance of the VAWT was improved more than twice when it operated within the optimized wind power tower compared to that obtained at a standalone.

Motion Study of Treatment Robot for Autistic Children Using Speech Data Classification Based on Artificial Neural Network (음성 분류 인공신경망을 활용한 자폐아 치료용 로봇의 지능화 동작 연구)

  • Lee, Jin-Gyu;Lee, Bo-Hee
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1440-1447
    • /
    • 2019
  • Currently, the prevalence of autism spectrum disorders in children is reported to be higher and shows various types of disorders. In particular, they are having difficulty in communication due to communication impairment in the area of social communication and need to be improved through training. Thus, this study proposes a method of acquiring voice information through a microphone mounted on a robot designed through preliminary research and using this information to make intelligent motions. An ANN(Artificial Neural Network) was used to classify the speech data into robot motions, and we tried to improve the accuracy by combining the Recurrent Neural Network based on Convolutional Neural Network. The preprocessing of input speech data was analyzed using MFCC(Mel-Frequency Cepstral Coefficient), and the motion of the robot was estimated using various data normalization and neural network optimization techniques. In addition, the designed ANN showed a high accuracy by conducting an experiment comparing the accuracy with the existing architecture and the method of human intervention. In order to design robot motions with higher accuracy in the future and to apply them in the treatment and education environment of children with autism.

Analyses on the Performance of the CNN Reflecting the Cerebral Structure for Prediction of Cybersickness Occurrence (사이버멀미 발생 예측을 위한 대뇌 구조를 반영한 CNN 성능 분석)

  • Shin, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.238-244
    • /
    • 2019
  • In this study, we compared and analyzed the performance of each Convolution Neural Network (CNN) by implementing the CNN that reflected the characteristics of the cerebral structure, in order to analyze the CNN that was used for the prediction of cybersickness, and provided the performance varying depending on characteristics of the brain. Dizziness has many causes, but the most severe symptoms are considered attributable to vestibular dysfunction associated with the brain. Brain waves serve as indicators showing the state of brain activities, and tend to exhibit differences depending on external stimulation and cerebral activities. Changes in brain waves being caused by external stimuli and cerebral activities have been proved by many studies and experiments, including the thesis of Martijn E. Wokke, Tony Ro, published in 2019. Based on such correlation, we analyzed brain wave data collected from dizziness-inducing environments and implemented the dizziness predictive artificial neural network reflecting characteristics of the cerebral structure. The results of this study are expected to provide a basis for achieving optimal performance of the CNN used in the prediction of dizziness, and for predicting and preventing the occurrence of dizziness under various virtual reality (VR) environments.

Compression method of feature based on CNN image classification network using Autoencoder (오토인코더를 이용한 CNN 이미지 분류 네트워크의 feature 압축 방안)

  • Go, Sungyoung;Kwon, Seunguk;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.280-282
    • /
    • 2020
  • 최근 사물인터넷(IoT), 자율주행과 같이 기계 간의 통신이 요구되는 서비스가 늘어감에 따라, 기계 임무 수행에 최적화된 데이터의 생성 및 압축에 대한 필요성이 증가하고 있다. 또한, 사물인터넷과 인공지능(AI)이 접목된 기술이 주목을 받으면서 딥러닝 모델에서 추출되는 특징(feature)을 디바이스에서 클라우드로 전송하는 방안에 관한 연구가 진행되고 있으며, 국제 표준화 기구인 MPEG에서는 '기계를 위한 부호화(Video Coding for Machine: VCM)'에 대한 표준 기술 개발을 진행 중이다. 딥러닝으로 특징을 추출하는 가장 대표적인 방법으로는 합성곱 신경망(Convolutional Neural Network: CNN)이 있으며, 오토인코더는 입력층과 출력층의 구조를 동일하게 하여 출력을 가능한 한 입력에 근사시키고 은닉층을 입력층보다 작게 구성하여 차원을 축소함으로써 데이터를 압축하는 딥러닝 기반 이미지 압축 방식이다. 이에 본 논문에서는 이러한 오토인코더의 성질을 이용하여 CNN 기반의 이미지 분류 네트워크의 합성곱 신경망으로부터 추출된 feature에 오토인코더를 적용하여 압축하는 방안을 제안한다.

  • PDF