최근 IT 산업이 급성장하면서 화상 회의, 게임, 채팅 등에서의 아바타(avatar) 제어를 위한 자연스러운 인터페이스 기술이 요구되고 있다. 본 논문에서는 동적 윤곽선 모델(active contour models; snakes)을 이용하여 복잡한 배경이 있는 컬러 CCD 카메라 영상에서 얼굴과 눈, 입, 눈썹, 코 등의 얼굴 요소에 대해 윤곽선을 추출하거나 위치를 파악하는 방법을 제안한다. 일반적으로 스네이크 알고리즘은 잡음에 민감하고 초기 모델을 어떻게 설정하는가에 따라 추출 성능이 크게 좌우되기 때문에 주로 단순한 배경의 영상에서 정면 얼굴의 추출에 사용되어왔다 본 연구에서는 이러한 단점을 파악하기 위해, 먼저 YIQ 색상 모델의 I 성분을 이용한 색상 정보와 차 영상 정보를 사용하여 얼굴의 최소 포함 사각형(minimum enclosing rectangle; MER)을 찾고, 이 얼굴 영역 내에서 기하학적인 위치 정보와 에지 정보를 이용하여 눈, 입, 눈썹, 코의 MER을 설정한다. 그런 다음, 각 요소의 MER 내에서 1차 미분과 2차 미분에 근거한 내부 에너지와 에지에 기반한 영상 에너지를 이용한 스네이크 알고리즘을 적용한다. 이때, 에지 영상에서 얼굴 주변의 복잡한 잡음을 제거하기 위하여 색상 정보 영상과 차 영상에 각각 모폴로지(morphology)의 팽창(dilation) 연산을 적용하고 이들의 AND 결합 영상에 팽창 연산을 다시 적용한 이진 영상을 필터로 사용한다. 총 7명으로부터 양 눈이 보이는 정면 유사 방향의 영상을 20장씩 취득하여 총 140장에 대해 실험한 결과, MER의 오차율은 얼굴, 눈, 입에 대해 각각 6.2%, 11.2%, 9.4%로 나타났다. 또한, 스네이크의 초기 제어점을 얼굴은 44개, 눈은 16개, 입은 24개로 지정하여 MER추출에 성공한 영상에 대해 스네이크 알고리즘을 수행한 결과, 추출된 영역의 오차율은 각각 2.2%, 2.6%, 2.5%로 나타났다.해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of