• Title/Summary/Keyword: 인공지능 품질

Search Result 200, Processing Time 0.023 seconds

A Survey on Methodology of Meta-Learning (메타 러닝과 방법론 연구 동향)

  • Hoon Ji;Yeon-Joon Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.665-666
    • /
    • 2023
  • 딥러닝은 인간이 탐지하기 어려운 데이터의 특징 및 패턴을 인지하고, 이들을 학습하여 데이터를 분류 및 예측할 수 있는 기술이다. 그러나 딥러닝 모델을 잘 학습시키기 위해서는 고품질의 대용량 데이터와 이들을 처리할 수 있는 방대한 컴퓨터 자원이 요구되는 것이 일반적이다. 따라서 소량의 데이터만이 존재하는 분야나 컴퓨터 자원이 한정되어 있는 상황에서는 딥러닝을 적용하기 어렵다. 본 논문에서는, 소량의 데이터로도 모델을 자신들의 태스크에 맞게 최적화시킬 수 있는 메타러닝에 대해 소개하고, 메타 러닝 기법들의 방향에 따른 Metric-Based, Model-Based 및 Optimization 기반 모델들에 대해 소개하고, 앞으로 나아가야 할 연구 방향에 대해 제시한다.

Development of Artificial Intelligence Model for Predicting Citrus Sugar Content based on Meteorological Data (기상 데이터 기반 감귤 당도 예측 인공지능 모델 개발)

  • Seo, Dongmin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2021
  • Citrus quality is generally determined by its sugar content and acidity. In particular, sugar content is a very important factor because it determines the taste of citrus. Currently, the most commonly used method of measuring citrus sugar content in farms is a portable juiced sugar meter and a non-destructive sugar meter. This method can be easily measured by individuals, but the accuracy of the sugar content is inferior to that of the citrus NongHyup official machine. In particular, there is an error difference of 0.5 Brix or more, which is still insufficient for use in the field. Therefore, in this paper, we propose an AI model that predicts the citrus sugar content of unmeasured days within the error range of 0.5 Brix or less based on the previously collected citrus sugar content and meteorological data (average temperature, humidity, rainfall, solar radiation, and average wind speed). In addition, it was confirmed that the prediction model proposed through performance evaluation had an mean absolute error of 0.1154 for Seongsan area and 0.1983 for the Hawon area in Jeju Island. Lastly, the proposed model supports an error difference of less than 0.5 Brix and is a technology that supports predictive measurement, so it is expected that its usability will be highly progressive.

The Development of Biodegradable Fiber Tensile Tenacity and Elongation Prediction Model Considering Data Imbalance and Measurement Error (데이터 불균형과 측정 오차를 고려한 생분해성 섬유 인장 강신도 예측 모델 개발)

  • Se-Chan, Park;Deok-Yeop, Kim;Kang-Bok, Seo;Woo-Jin, Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.489-498
    • /
    • 2022
  • Recently, the textile industry, which is labor-intensive, is attempting to reduce process costs and optimize quality through artificial intelligence. However, the fiber spinning process has a high cost for data collection and lacks a systematic data collection and processing system, so the amount of accumulated data is small. In addition, data imbalance occurs by preferentially collecting only data with changes in specific variables according to the purpose of fiber spinning, and there is an error even between samples collected under the same fiber spinning conditions due to difference in the measurement environment of physical properties. If these data characteristics are not taken into account and used for AI models, problems such as overfitting and performance degradation may occur. Therefore, in this paper, we propose an outlier handling technique and data augmentation technique considering the characteristics of the spinning process data. And, by comparing it with the existing outlier handling technique and data augmentation technique, it is shown that the proposed technique is more suitable for spinning process data. In addition, by comparing the original data and the data processed with the proposed method to various models, it is shown that the performance of the tensile tenacity and elongation prediction model is improved in the models using the proposed methods compared to the models not using the proposed methods.

A Study on the Prediction of Strawberry Production in Machine Learning Infrastructure (머신러닝 기반 시설재배 딸기 생산량 예측 연구)

  • Oh, HanByeol;Lim, JongHyun;Yang, SeungWeon;Cho, YongYun;Shin, ChangSun
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Recently, agricultural sites are automating into digital agricultural smart farms by applying technologies such as big data and Internet of Things (IoT). These smart farms aim to increase production and improve crop quality by measuring the environment of crops, investigating and processing data. Production prediction is an important study in smart farm digital agriculture, which is a high-tech agriculture, and it is necessary to analyze environmental data using big data and further standardized research to manage the quality of growth information data. In this paper, environmental and production data collected from smart farm strawberry farms were analyzed and studied. Based on regression analysis, crop production prediction models were analyzed using Ridge Regression, LightGBM, and XGBoost. Among the three models, the optimal model was XGBoost, and R2 showed 82.5 percent explanatory power. As a result of the study, the correlation between the amount of positive fluid absorption and environmental data was confirmed, and significant results were obtained for the production prediction study. In the future, it is expected to contribute to the prevention of environmental pollution and reduction of sheep through the management of sheep by studying the amount of sheep absorption, such as information on the growing environment of crops and the ingredients of sheep.

A Study on Major Characteristic Analysis and Quality Evaluation Attributes of Artificial Intelligence Service (인공지능서비스의 특성분석과 품질평가속성에 대한 연구)

  • Baek, Chang Hwa;Lim, Sung Uk;Choe, Jae Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.837-846
    • /
    • 2019
  • Purpose: The purpose of this study is to define various concepts, features, and scopes by examining various previous studies on AI services that are completely different from existing services. It also examines the limitations of existing service quality evaluation methods and studies the characteristics by combining them with various cases of new AI services. And this is to derive and propose quality evaluation attributes of AI service. Methods: The concept and characteristics of artificial intelligence were derived through research and analysis of various previous studies related to artificial intelligence. The key characteristics and quality evaluation items were derived through the KJ method and matching based on the keywords and characteristics derived from previous studies and various cases. Results: Based on the review of various previous studies on the quality of artificial intelligence services, this study presents the main characteristics and quality evaluation items of new artificial intelligence services, which are completely different from existing service quality evaluations. Conclusion: The quality measurement model of AI service is very useful when planning and developing AI-based new products or services because it can accurately evaluate the requirements of consumers using the services of the new AI era. In addition, consumers can be recommended a customized service according to the situation or taste, and can be provided with a customized service based on this.

The Role of Clients in Software Projects with Agile Methods (애자일 방법론을 사용한 소프트웨어 프로젝트에서의 사용자 역할 분석)

  • Kim, Vladimir;Cho, Wooje;Jung, Yoonhyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.141-160
    • /
    • 2019
  • Agile methodologies in software development, including the development of artificial intelligence software, have been widespread over the past several years. In spite of the popularity of agile methodologies in practice, there is a lack of empirical evidence to identify determinants of success of software projects in which agile methods are used. To understand the role of clients in software project where agile methods are used, we examine the effect of client-side factors, including lack of user involvement, unrealistic client expectations, and constant changes of requirements on project success from practitioners' perspective. Survey methods are used in this study. Data were collected by means of online survey to IT professionals who have experience with software development methodologies, and ordered logit regression is used to analyze the survey data. Results of our study imply the following managerial findings. First, user involvement is critical to project success to take advantage of agile methods. Second, it is interesting that, with an agile method, constant changes of client's requirements is not a negative factor but a positive factor of project success. Third, unrealistic client expectations do negatively affect project success even with agile methods.

Analysis of Patent Trends in Agricultural Machinery (최신 농업기계 특허 동향 조사)

  • Hong, S.J.;Kim, D.E.;Kang, D.H.;Kim, J.J.;Kang, J.G.;Lee, K.H.;Mo, C.Y.;Ryu, D.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.99-111
    • /
    • 2021
  • The connected farm that agricultural land, agricultural machinery and farmer are connected with an IoT gateway is in the commercialization stage. That has increased productivity, efficiency and profitability by intimate information exchange among those. In order to develop the educational program of intelligent agricultural machinery and the agricultural machinery safety education performance indicator, this study analyzed patent trends of agricultural machine with unmanned technology used in agriculture and efficiency technology applied advanced technologies such as ICT, robots and artificial intelligence. We investigated and analyzed patent trends in agricultural machinery of Korea, the USA and Japan as well as the countries in Europe. The United States is an advanced country in the field of unmanned technology and efficiency technology used in agriculture. Agricultural automation technology in Korea is insufficient compared to developed countries, which means rapid technological development is needed. In the sub-fields of field automation technology, path generation and following technology and working machine control technology through environmental awareness have activated.

Quality Improvement Method on Grammatical Errors of Information System Audit Report (정보시스템 감리보고서의 문법적 오류에 대한 품질 향상 방안)

  • Lee, Don Hee;Lee, Gwan Hyung;Moon, Jin Yong;Kim, Jeong Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.211-219
    • /
    • 2019
  • Accomplishing information system, techniques, methodology have been studied continuously and give much help to auditors who are using them. Additionally audit report which is the conclusion of accomplishing ISA(information system audit), has law of a basis and phase with ITA/EA Law(Electronic Government Law). This paper is for better quality of ISA report. But it has more errors about sentence and Grammatical structures. In this paper, to achieve quality improvement objectives, it is necessary to recognize the importance of an audit report by investigating on objectives, functionality, structures and usability of a report firstly, and a legal basis, the presence of report next. Several types of audit reports were chosen and the reports errors were divided into several categories and analyzed. After grasping reasons of those errors, the methods for fixing those errors and check-lists model was provided. And based on that foundation, the effectiveness validation about real audit reports was performed. The necessity for efforts to improve the quality of audit reports was emphasized and further research subject(AI Automatic tool) of this paper conclusion. We also expect this paper to be useful for the organization to improve on ISA in the future.

Expansion of the Scope of Electronic Commerce by Standardization: An Analysis a Secondhand Clothing Market (표준화를 통한 전자상거래의 영역 확장: 중고의류 시장 사례 분석)

  • Kim, Iljoo
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • Since the first sale of a banner advertisement in 1995, electronic commerce has become a new transaction channel for consumers. With more than 20 years of its history, electronic commerce has become an important consumption channel for everyone and inexperience is no more a reason that discourages the consumption through this channel. The great expansion of this channel is now a formidable thereat to traditional channels. However, products with high asset specificity and complexity are still having difficulty to be traded over the online channel where the experience of the products for a consumer is limited. Especially, variations of the same product's quality depending on how pre-owners used the product and high complexity to describe the quality of the products prevent used goods from being traded over e-channels. Added to that, the information asymmetry between sellers and buyers for used goods makes the establishment of market transaction difficult. Considering the challenges, the current case study discusses thredUP, a clothing resale platform company. In this paper, we study how the company could overcome those limitations in this toughest resale market through the use of AI for dynamic pricing and standarized product quality ratings. In addition, we also hope to provide readers with the opportunity to understand the secondhand industries and its market, and see where it is heading for in the future.

A Study on the Factors Influencing a Company's Selection of Machine Learning: From the Perspective of Expanded Algorithm Selection Problem (기업의 머신러닝 선정에 영향을 미치는 요인 연구: 확장된 알고리즘 선택 문제의 관점으로)

  • Yi, Youngsoo;Kwon, Min Soo;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.37-64
    • /
    • 2022
  • As the social acceptance of artificial intelligence increases, the number of cases of applying machine learning methods to companies is also increasing. Technical factors such as accuracy and interpretability have been the main criteria for selecting machine learning methods. However, the success of implementing machine learning also affects management factors such as IT departments, operation departments, leadership, and organizational culture. Unfortunately, there are few integrated studies that understand the success factors of machine learning selection in which technical and management factors are considered together. Therefore, the purpose of this paper is to propose and empirically analyze a technology-management integrated model that combines task-tech fit, IS Success Model theory, and John Rice's algorithm selection process model to understand machine learning selection within the company. As a result of a survey of 240 companies that implemented machine learning, it was found that the higher the algorithm quality and data quality, the higher the algorithm-problem fit was perceived. It was also verified that algorithm-problem fit had a significant impact on the organization's innovation and productivity. In addition, it was confirmed that outsourcing and management support had a positive impact on the quality of the machine learning system and organizational cultural factors such as data-driven management and motivation. Data-driven management and motivation were highly perceived in companies' performance.