• Title/Summary/Keyword: 인공지능 수학

Search Result 132, Processing Time 0.028 seconds

Prediction of Local Scour Around Bridge Piers Using GEP Model (GEP 모형을 이용한 교각주위 국부세굴 예측)

  • Kim, Taejoon;Choi, Byungwoong;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1779-1786
    • /
    • 2014
  • Artificial Intelligence-based techniques have been applied to problems where mathematical relations can not be presented due to complicatedness of the physical process. A representative example in hydraulics is the local scour around bridge piers. This study presents a GEP model for predicting the local scour around bridge piers. The model is trained by 64 laboratory data to build the regression equation, and the constructed model is verified against 33 laboratory data. Comparisons between the models with dimensional and normalized variables reveals that the GEP model with dimensional variables predicts better. The proposed model is now applied to two field datasets. It is found that the MAPE of the scour depths predicted by the GEP model increases compared with the predictions of local scours in laboratory scale. In addition, the model performance increases significantly when the model is trained by the field dataset rather than the laboratory dataset. The findings suggest that apart from the ANN model, GEP model is a sound and reliable model for predicting local scour depth.

Analysis of Technical Trend for Drilling ROP Optimization with Artificial Intelligent (인공지능을 적용한 시추 굴진율 최적화 기술 동향 분석)

  • Jung, Ji-hun;Han, Dong-kwon;Kim, Sang-ho;Yoo, In-hang;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.66-75
    • /
    • 2020
  • Drilling operation is the most important and costly essential work in oil and gas exploration and development. Therefore, the studies about rate of penetration have been carried out continuously to improve drilling efficiency. In recent years, data-driven models have been developed by various researchers to overcome disadvantages of traditional mathematical models. For the data-driven models, selecting proper algorithms and parameters is very important. In addition, data-driven models should be retrained in real-time during continuous drilling operations in order to improve the model performance. In this paper, the latest studies are investigated to provide information about algorithms, drilling parameters and model retraining intervals that used in drilling optimization.

Improving the performance for Relation Networks using parameters tuning (파라미터 튜닝을 통한 Relation Networks 성능개선)

  • Lee, Hyun-Ok;Lim, Heui-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.377-380
    • /
    • 2018
  • 인간의 추론 능력이란 문제에 주어진 조건을 보고 문제 해결에 필요한 것이 무엇인지를 논리적으로 생각해 보는 것으로 문제 상황 속에서 일정한 규칙이나 성질을 발견하고 이를 수학적인 방법으로 법칙을 찾아내거나 해결하는 능력을 말한다. 이러한 인간인지 능력과 유사한 인공지능 시스템을 개발하는데 있어서 핵심적 도전은 비구조적 데이터(unstructured data)로부터 그 개체들(object)과 그들간의 관계(relation)에 대해 추론하는 능력을 부여하는 것이라고 할 수 있다. 지금까지 딥러닝(deep learning) 방법은 구조화 되지 않은 데이터로부터 문제를 해결하는 엄청난 진보를 가져왔지만, 명시적으로 개체간의 관계를 고려하지 않고 이를 수행해왔다. 최근 발표된 구조화되지 않은 데이터로부터 복잡한 관계 추론을 수행하는 심층신경망(deep neural networks)은 관계추론(relational reasoning)의 시도를 이해하는데 기대할 만한 접근법을 보여주고 있다. 그 첫 번째는 관계추론을 위한 간단한 신경망 모듈(A simple neural network module for relational reasoning) 인 RN(Relation Networks)이고, 두 번째는 시각적 관찰을 기반으로 실제대상의 미래 상태를 예측하는 범용 목적의 VIN(Visual Interaction Networks)이다. 관계 추론을 수행하는 이들 심층신경망(deep neural networks)은 세상을 객체(objects)와 그들의 관계(their relations)라는 체계로 분해하고, 신경망(neural networks)이 피상적으로는 매우 달라 보이지만 근본적으로는 공통관계를 갖는 장면들에 대하여 객체와 관계라는 새로운 결합(combinations)을 일반화할 수 있는 강력한 추론 능력(powerful ability to reason)을 보유할 수 있다는 것을 보여주고 있다. 본 논문에서는 관계 추론을 수행하는 심층신경망(deep neural networks) 중에서 Sort-of-CLEVR 데이터 셋(dataset)을 사용하여 RN(Relation Networks)의 성능을 재현 및 관찰해 보았으며, 더 나아가 파라미터(parameters) 튜닝을 통하여 RN(Relation Networks) 모델의 성능 개선방법을 제시하여 보았다.

The Design of Application Model using Manufacturing Data in Protection Film Process for Smart Manufacturing Innovation (스마트 제조혁신을 위한 보호필름 공정 제조데이터의 활용모델 설계)

  • Cha, ByungRae;Park, Sun;Lee, Seong-ho;Shin, Byeong-Chun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 2019
  • The global manufacturing industry has reached the limit to growth due to a long-term recession, the rise of labor cost and raw material. As a solution to these difficulties, we promote the 4th Industry Revolution based on ICT and sensor technology. Following this trend, this paper proposes the design of a model using manufacturing data in the protection film process for smart manufacturing innovation. In the protective film process, the manufacturing data of temperature, pressure, humidity, and motion and thermal image are acquired by various sensors for the raw material blending, stirring, extrusion, and inspection processes. While the acquired manufacturing data is stored in mass storage, A.I. platform provides time-series image analysis and its visualization.

A hidden Markov model for predicting global stock market index (은닉 마르코프 모델을 이용한 국가별 주가지수 예측)

  • Kang, Hajin;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.461-475
    • /
    • 2021
  • Hidden Markov model (HMM) is a statistical model in which the system consists of two elements, hidden states and observable results. HMM has been actively used in various fields, especially for time series data in the financial sector, since it has a variety of mathematical structures. Based on the HMM theory, this research is intended to apply the domestic KOSPI200 stock index as well as the prediction of global stock indexes such as NIKKEI225, HSI, S&P500 and FTSE100. In addition, we would like to compare and examine the differences in results between the HMM and support vector regression (SVR), which is frequently used to predict the stock price, due to recent developments in the artificial intelligence sector.

Design and Utilization of Connected Data Architecture-based AI Service of Mass Distributed Abyss Storage (대용량 분산 Abyss 스토리지의 CDA (Connected Data Architecture) 기반 AI 서비스의 설계 및 활용)

  • Cha, ByungRae;Park, Sun;Seo, JaeHyun;Kim, JongWon;Shin, Byeong-Chun
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.99-107
    • /
    • 2021
  • In addition to the 4th Industrial Revolution and Industry 4.0, the recent megatrends in the ICT field are Big-data, IoT, Cloud Computing, and Artificial Intelligence. Therefore, rapid digital transformation according to the convergence of various industrial areas and ICT fields is an ongoing trend that is due to the development of technology of AI services suitable for the era of the 4th industrial revolution and the development of subdivided technologies such as (Business Intelligence), IA (Intelligent Analytics, BI + AI), AIoT (Artificial Intelligence of Things), AIOPS (Artificial Intelligence for IT Operations), and RPA 2.0 (Robotic Process Automation + AI). This study aims to integrate and advance various machine learning services of infrastructure-side GPU, CDA (Connected Data Architecture) framework, and AI based on mass distributed Abyss storage in accordance with these technical situations. Also, we want to utilize AI business revenue model in various industries.

Analysis of Academic Achievement Data Using AI Cluster Algorithms (AI 군집 알고리즘을 활용한 학업 성취도 데이터 분석)

  • Koo, Dukhoi;Jung, Soyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.1005-1013
    • /
    • 2021
  • With the prolonged COVID-19, the existing academic gap is widening. The purpose of this study is to provide homeroom teachers with a visual confirmation of the academic achievement gap in grades and classrooms through academic achievement analysis, and to use this to help them design lessons and explore ways to improve the academic achievement gap. The data of students' Korean and math diagnostic evaluation scores at the beginning of the school year were visualized as clusters using the K-means algorithm, and as a result, it was confirmed that a meaningful clusters were formed. In addition, through the results of the teacher interview, it was confirmed that this system was meaningful in improving the academic achievement gap, such as checking the learning level and academic achievement of students, and designing classes such as individual supplementary instruction and level-specific learning. This means that this academic achievement data analysis system helps to improve the academic gap. This study provides practical help to homeroom teachers in exploring ways to improve the academic gap in grades and classes, and is expected to ultimately contribute to improving the academic gap.

A Study on Drift Phenomenon of Trained ML (학습된 머신러닝의 표류 현상에 관한 고찰)

  • Shin, ByeongChun;Cha, YoonSeok;Kim, Chaeyun;Cha, ByungRae
    • Smart Media Journal
    • /
    • v.11 no.7
    • /
    • pp.61-69
    • /
    • 2022
  • In the learned machine learning, the performance of machine learning degrades at the same time as drift occurs in terms of learning models and learning data over time. As a solution to this problem, I would like to propose the concept and evaluation method of ML drift to determine the re-learning period of machine learning. An XAI test and an XAI test of an apple image were performed according to strawberry and clarity. In the case of strawberries, the change in the XAI analysis of ML models according to the clarity value was insignificant, and in the case of XAI of apple image, apples normally classified objects and heat map areas, but in the case of apple flowers and buds, the results were insignificant compared to strawberries and apples. This is expected to be caused by the lack of learning images of apple flowers and buds, and more apple flowers and buds will be studied and tested in the future.

A Study on the Basic Mathematical Competency Levels of Freshmen Students in Radiology Department (방사선과 신입생의 기초 수리능력 수준에 대한 연구)

  • Jang, Hyon Chol;Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2020
  • The era of the Fourth Industrial Revolution is increasingly demanding mathematical competencies for virtual reality (VR), artificial intelligence (AI) and the like. In this context, this study intended to identify the basic mathematical competency levels of university freshman students in radiology department and to provide basic data thereon. For this, the diagnostic assessment of basic learning competencies for the domain of mathematics was conducted from June 17, 2019 to June 28, 2019 among 78 freshman students of radiology department at S university and D university. As a result, the university students' overall basic mathematical competency levels were diagnosed to be excellent. However, their levels in the sectors of the geometry and vector and the probability and statistics were diagnosed to be moderate, with the mean scores of 2.61 points and 2.64 points, respectively, which were found to be lower than those of the other sections. As for basic mathematical competency levels according to genders, the levels of male students and female students were diagnosed to be excellent, with the mean scores of 17.48 points and 16.29 points, respectively, showing no statistically significant difference (p>0.05). Given the small number of subjects and regional restriction, there might be some limitations in the generalization of the findings of the present study to all university freshman students and all departments. The above results suggest that it is necessary to implement various programs such as student level-based special lectures for enhancing basic mathematical competencies relating to major in order to improve the basic mathematical competencies of freshman students in radiology department, and that it is necessary to increase the students' mathematical competencies by offering major math courses in the curriculum and applying teaching-learning methods matching students' levels.

Analysis of AI interview data using unified non-crossing multiple quantile regression tree model (통합 비교차 다중 분위수회귀나무 모형을 활용한 AI 면접체계 자료 분석)

  • Kim, Jaeoh;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.753-762
    • /
    • 2020
  • With an increasing interest in integrating artificial intelligence (AI) into interview processes, the Republic of Korea (ROK) army is trying to lead and analyze AI-powered interview platform. This study is to analyze the AI interview data using a unified non-crossing multiple quantile tree (UNQRT) model. Compared to the UNQRT, the existing models, such as quantile regression and quantile regression tree model (QRT), are inadequate for the analysis of AI interview data. Specially, the linearity assumption of the quantile regression is overly strong for the aforementioned application. While the QRT model seems to be applicable by relaxing the linearity assumption, it suffers from crossing problems among estimated quantile functions and leads to an uninterpretable model. The UNQRT circumvents the crossing problem of quantile functions by simultaneously estimating multiple quantile functions with a non-crossing constraint and is robust from extreme quantiles. Furthermore, the single tree construction from the UNQRT leads to an interpretable model compared to the QRT model. In this study, by using the UNQRT, we explored the relationship between the results of the Army AI interview system and the existing personnel data to derive meaningful results.