• Title/Summary/Keyword: 인공지능 기반 제품

Search Result 88, Processing Time 0.028 seconds

Autoencoder-based MCT Anomaly Detection Algorithm (오토인코더를 활용한 MCT 이상탐지 알고리즘 개발)

  • Kim, Min-hee;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.89-92
    • /
    • 2021
  • In a manufacturing fields, an abnormality or breakdown of equipment is a factor that causes product defects. Recently, with the spread of smart factory services, a lot of research to predict and prevent machine's failures is actively ongoing. However, there is a big difficulty in developing a classification model because the number of abnormal or failure data of the machine is severely smaller than normal data. In this paper, we present an algorithm for detecting abnormalities in an MCT at manufacturing work site depending on the differences between inputs and outputs of Autoencoder model and analyze its performance. The algorithm detects abnormalities using only features of normal data from manufacturing data of the MCT in which abnormal data does not exist.

  • PDF

Study on Development of LED Camping Light Design Based on IOT and Emotional Lighting Contents (IOT 및 감성조명 콘텐츠 기반의 LED 캠핑등 디자인 개발에 관한 연구)

  • Kim, Hee-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.332-342
    • /
    • 2018
  • This study is aimed at suggesting information about technical choices for designing LED camping lights based on emotional lighting contents of integrated IOT and design areas which take a central role in creation and knowledge based industries and the procedure for materializing them. 'i-Light,' a portable LED camping light, is 'connected lighting' connecting men, space and emotion and a smart camping light based on IOT and emotional lighting contents. 'i-Light' has two functions. One is about lighting for adjusting color and color temperature naturally and the other is about safety for detecting harmful gases. 'i-Light' also has various emotional functions for experiencing interaction and taste of light. For the purpose, portable LED camping lights were designed, first of all, and then a highly color rendering/full-color lighting module, a smart sensor module and an IOT device platform were developed. In addition, efforts were made to establish detailed data about emotional lighting contents and to develop a Web application based on them. Finally, prototypes of portable LED camping lights were made to get a test bench and usability evaluation from related organizations. According to the results, all of 12 developed emotional lighting contents and three IOT safety sensors were suitable and prototypes were satisfactory. This paper will suggest a direction about actual technical choices for development of contents and products integrating artificial intelligence and big data and about the procedure for materializing them.

A Study on White Space Search of Wireless Signal based Passive Tracking Technology using Enhanced Search Formula of Patent Analysis (개선된 검색식 기반 특허분석을 통한 무선신호 기반 Passive Tracking 공백기술 도출에 관한 연구)

  • Lee, Hangwon;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.802-816
    • /
    • 2021
  • Purpose: In this paper, we propose a direction of future research and development to be carried out in the passive tracking field by deriving a white space with enhanced search formula of patent analysis. Method: In this paper, we derive a white space by identifying the direction and the flow of technology change and by matrixing the object and solution through extensive patent search with enhanced search formula and analysis in the field of passive tracking technology. Result: By the proposed scheme, 'multi-target positioning and tracking' and '3D positioning technology' using artificial intelligence, adaptive/hybrid positioning technology, and radar/antenna were derived as white space technologies and confirmed with absence of any services or products. Conclusion: The derived white space technologies from this paper are the areas where patent applications are not active and there are not many prior patents, thus it is necessary to secure the rights through more active R&D and patent application activities.

Development of a Deep Learning Algorithm for Anomaly Detection of Manufacturing Facility (설비 이상탐지를 위한 딥러닝 알고리즘 개발)

  • Kim, Min-Hee;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.199-206
    • /
    • 2022
  • A malfunction or breakdown of a manufacturing facility leads to product defects and the suspension of production lines, resulting in huge financial losses for manufacturers. Due to the spread of smart factory services, a large amount of data is being collected in factories, and AI-based research is being conducted to predict and diagnose manufacturing facility breakdowns or manufacturing site efficiency. However, because of the characteristics of manufacturing data, such as a severe class imbalance about abnormalities and ambiguous label information that distinguishes abnormalities, developing classification or anomaly detection models is highly difficult. In this paper, we present an deep learning algorithm for anomaly detection of a manufacturing facility using reconstruction loss of CNN-based model and ananlyze its performance. The algorithm detects anomalies by relying solely on normal data from the facility's manufacturing data in the exclusion of abnormal data.

A Longitudinal Study on Customers' Usable Features and Needs of Activity Trackers as IoT based Devices (사물인터넷 기반 활동량측정기의 고객사용특성 및 욕구에 대한 종단연구)

  • Hong, Suk-Ki;Yoon, Sang-Chul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Since the information of $4^{th}$ Industrial Revolution is introduced in WEF (World Economic Forum) in 2016, IoT, AI, Big Data, 5G, Cloud Computing, 3D/4DPrinting, Robotics, Nano Technology, and Bio Engineering have been rapidly developed as business applications as well as technologies themselves. Among the diverse business applications for IoT, wearable devices are recognized as the leading application devices for final customers. This longitudinal study is compared to the results of the 1st study conducted to identify customer needs of activity trackers, and links the identified users' needs with the well-known marketing frame of marketing mix. For this longitudinal study, a survey was applied to university students in June, 2018, and ANOVA were applied for major variables on usable features. Further, potential customer needs were identified and visualized by Word Cloud Technique. According to the analysis results, different from other high tech IT devices, activity trackers have diverse and unique potential needs. The results of this longitudinal study contribute primarily to understand usable features and their changes according to product maturity. It would provide some valuable implications in dynamic manner to activity tracker designers as well as researchers in this arena.

Development of a Simulator for Optimizing Semiconductor Manufacturing Incorporating Internet of Things (사물인터넷을 접목한 반도체 소자 공정 최적화 시뮬레이터 개발)

  • Dang, Hyun Shik;Jo, Dong Hee;Kim, Jong Seo;Jung, Taeho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.4
    • /
    • pp.35-41
    • /
    • 2017
  • With the advances in Internet over Things, the demand in diverse electronic devices such as mobile phones and sensors has been rapidly increasing and boosting up the researches on those products. Semiconductor materials, devices, and fabrication processes are becoming more diverse and complicated, which accompanies finding parameters for an optimal fabrication process. In order to find the parameters, a process simulation before fabrication or a real-time process control system during fabrication can be used, but they lack incorporating the feedback from post-fabrication data and compatibility with older equipment. In this research, we have developed an artificial intelligence based simulator, which finds parameters for an optimal process and controls process equipment. In order to apply the control concept to all the equipment in a fabrication sequence, we have developed a prototype for a manipulator which can be installed over an existing buttons and knobs in the equipment and controls the equipment communicating with the AI over the Internet. The AI is based on the deep learning to find process parameters that will produce a device having target electrical characteristics. The proposed simulator can control existing equipment via the Internet to fabricate devices with desired performance and, therefore, it will help engineers to develop new devices efficiently and effectively.

Temperature Prediction and Control of Cement Preheater Using Alternative Fuels (대체연료를 사용하는 시멘트 예열실 온도 예측 제어)

  • Baasan-Ochir Baljinnyam;Yerim Lee;Boseon Yoo;Jaesik Choi
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.3-14
    • /
    • 2024
  • The preheating and calcination processes in cement manufacturing, which are crucial for producing the cement intermediate product clinker, require a substantial quantity of fossil fuels to generate high-temperature thermal energy. However, owing to the ever-increasing severity of environmental pollution, considerable efforts are being made to reduce carbon emissions from fossil fuels in the cement industry. Several preliminary studies have focused on increasing the usage of alternative fuels like refuse-derived fuel (RDF). Alternative fuels offer several advantages, such as reduced carbon emissions, mitigated generation of nitrogen oxides, and incineration in preheaters and kilns instead of landfilling. However, owing to the diverse compositions of alternative fuels, estimating their calorific value is challenging. This makes it difficult to regulate the preheater stability, thereby limiting the usage of alternative fuels. Therefore, in this study, a model based on deep neural networks is developed to accurately predict the preheater temperature and propose optimal fuel input quantities using explainable artificial intelligence. Utilizing the proposed model in actual preheating process sites resulted in a 5% reduction in fossil fuel usage, 5%p increase in the substitution rate with alternative fuels, and 35% reduction in preheater temperature fluctuations.

Smart Radar System for Life Pattern Recognition (생활패턴 인지가 가능한 스마트 레이더 시스템)

  • Sang-Joong Jung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • At the current camera-based technology level, sensor-based basic life pattern recognition technology has to suffer inconvenience to obtain accurate data, and commercial band products are difficult to collect accurate data, and cannot take into account the motive, cause, and psychological effect of behavior. the current situation. In this paper, radar technology for life pattern recognition is a technology that measures the distance, speed, and angle with an object by transmitting a waveform designed to detect nearby people or objects in daily life and processing the reflected received signal. It was designed to supplement issues such as privacy protection in the existing image-based service by applying it. For the implementation of the proposed system, based on TI IWR1642 chip, RF chipset control for 60GHz band millimeter wave FMCW transmission/reception, module development for distance/speed/angle detection, and technology including signal processing software were implemented. It is expected that analysis of individual life patterns will be possible by calculating self-management and behavior sequences by extracting personalized life patterns through quantitative analysis of life patterns as meta-analysis of living information in security and safe guards application.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.