최근 인공지능(AI) 기술의 신장을 바탕으로 스마트폰, 스마트 스피커, 챗봇 등과 같은 AI 기반 제품(AI-Enabled Products)의 출시가 점차 증가하고 있다. 이에 따라 AI 기반 제품이 지닌 편익을 중심으로 소비자의 수용의도를 밝히고자 하는 많은 연구가 진행되고 있지만, AI 기반 제품이 지닌 특징을 고려하여 속성을 분류하여 각 속성에 대한 소비자의 지각된 효용 가치에 대해서는 연구가 이루어지지 않았다. 따라서 본 연구는 DeLone과 McLean의 IS Success Model을 바탕으로 AI 제품 속성을 AI 속성과 Non-AI 속성으로 구분하고, 컨조인트 분석을 통해 각 속성이 지닌 효용 가치를 기반으로 제품 개발의 방향성을 제안하고자 한다. 또한, AI 제품의 수용 시점에 따른 AI 제품 속성의 상대적 중요도에 차이가 나타나는지 살펴보고자 한다. 더 나아가 컨조인트 분석을 통해 도출된 각 응답자의 효용 가치를 기반으로 군집 분석을 통해 시장을 세분화하고, 각 세분시장을 구성하고 있는 소비자들의 특징과 니즈를 이해하고자 하였다. 본 연구를 통해 AI 기반 제품의 특성과 속성에 대한 개념적으로 구조화된 틀을 제시하는 이론적 시사점과 각 세분시장에 따라 최적화된 AI 제품 개발 방향을 제안한다는 실무적 시사점을 제공할 것으로 기대한다.
우리나라 중소기업은 현재 국내 외 다양한 환경 요인(경쟁력 확보 및 우수 제품 개발 등)으로 인하여 산업 구조가 과거에 비해 빠르게 변화하고 있는 상황이다. 특히, 인공지능과 관련된 다양한 장비가 제조현장에 투입되면서 스마트팩토리 환경에서 생산되는 데이터 수집 및 활용의 중요성이 점점 증가하고 있다. 본 논문에서는 최근 중소기업 제조 현장이 스마트팩토리화 되면서 제조 현장에서 생산되는 제품의 프로세스를 향상시키기 위한 인공지능 기반 스마트팩토리 모델을 제안한다. 제안 모델은 갈수록 치열해지는 제조 환경의 경쟁력 확보 및 생산 비용 절감을 최소화시키는 것이 목적이다. 제안 모델은 인공지능 기반의 스마트팩토리 현장에서 생산되는 제품의 정보뿐만 아니라 제품 생산에 소비되는 노동력, 노동 근무 시간 및 가동 공장기계 상태 등을 모두 고려하여 관리한다. 또한, 제안 모델에서 생산되는 데이터는 유사 기업과 시스템 연계 및 정보 공유가 가능하기 때문에 제조 현장 운영의 기업간 전략적 협력이 가능하다.
인간이 지닌 지적인 능력을 규명하여 컴퓨터로 하여금 지능이 필요로 하는 일을 수행할 수 있도록 하는 인공지능(Artificial Intelligence, 이하 AI)기술에 관한 관심이 높아지고 있는 가운데 선진각국에서는 철강, 자동차, 산업기계 등 다양한 분야에서 제품의 라이프 사이클 단축, 다품종 소량 생산, 효율적인 조업, 고도의 품질제어 요구에 유연하게 대처하기 위하여 인공지능 개발 프로젝트를 활발히 진행중이다. 본고에서는 산업기계분야에서 인공지능 개발에 필요한 기반환경에 대하여 살펴보고 선진국의 주요 개발동향 및 우리나라의 개발실태를 살표보고자 한다.
인간이 지닌 지적인 능력을 규명하여 컴퓨터로 하여금 지능이 필요로 하는 일을 수행할 수 있도록 하는 인공지능(Artificial Intelligence, 이하 AI)기술에 관한 관심이 높아지고 있는 가운데 선진각국에서는 철강, 자동차, 산업기계 등 다양한 분야에서 제품의 라이프 사이클 단축, 다품종 소량 생산, 효율적인 조업, 고도의 품질제어 요구에 유연하게 대처하기 위하여 인공지능 개발 프로젝트를 활발히 진행중이다. 본고에서는 산업기계분야에서 인공지능 개발에 필요한 기반환경에 대하여 살펴보고 선진국의 주요 개발동향 및 우리나라의 개발실태를 살펴보고자 한다.
본 논문에서는 인공지능, 사물인터넷 등 4차 산업혁명 기술을 기반으로 생산 업체와 공급 업체 간의 공급망의 가시성, 안전성, 효율성 향상을 위한 물류 표준을 준수하며 고도화 및 지능화된 스마트 SCM 솔루션을 제시하고자 한다. 이를 위해 사물 인터넷, 인공지능 기술을 기반으로 공급망의 가시성, 안전성, 효율성 향상을 위한 물류 표준을 준수하며 고도화되고 지능화된 효율적인 자동 발주 솔루션을 제시한다. 자동 발수 솔루션은 협력업체와의 생산계획정보, 발주정보, 납품정보, 품질판정정보, 재고현황 등의 제품 데이터를 실시간 공유하는 웹 기반 솔루션이다.
프레스 공정은 가열 또는 가열하지 않은 상태의 재료에 힘을 가해 원하는 형태로 변형시켜 제품을 만드는 압축 가공 과정이다. 짧은 시간의 연속 압축을 통해 제품을 생산하는 프레스 장비의 특성상 제품 불량은 연속적으로 발생하며 이러한 문제를 해결하기 위한 시스템은 다양한 기술을 이용하여 개발되고 있다. 본 논문은 불량을 탐지하는 인공지능 알고리즘을 기반으로 실시간 불량탐지 시스템을 제안한다. 프레스 장치에 각종 센서를 부착하여 장비의 상태와 불량과의 관계를 빅데이터 플랫폼을 기반으로 정의하고 수집한다. 수집된 데이터를 기반으로 인공지능 알고리즘을 개발하고 개발된 알고리즘을 임베디드 보드를 이용하여 구현함으로써 실제 현장에 적용하여 시스템의 실용성을 보이겠다.
많은 분야에서 기기설비들의 고장, 결함은 안전과 관련되어 있기 때문에 연구가 활발히 진행되고 있다. 주로 데이터를 취득하여 제품의 유지보수 및 품질을 향상시키는 연구로 고장을 나타내는 특성 인자를 추출하여 고장진단을 하는 것이다. 하지만, 과거의 룰 기반 결함 탐지 기법은 예외의 경우를 탐지하기 어렵다는 문제를 가져왔다. 최근 들어 인공지능이 특성 인자를 쉽게 추출할 수 있다는 장점으로 인해 인공지능과 결합된 고장진단 시스템이 많이 제안되고 있다. 본 논문에서는 인공지능의 추세와 인공지능과 결합된 고장진단 시스템을 소개한다.
의식주 중에서 자신을 표현하고 외부와의 교류를 할 수 있는 분야는 패션분야로서 인간 생활과 밀접한 관계를 가지고 있으며 사람들의 개인화된 성향 변화 및 인터넷 환경의 개선으로 트렌드는 빠르게 변화하고 있다. 인공지능 기술의 발전은 단순히 객체의 검출 및 분류에서 벗어나 패션 아이템의 분석 및 세부적인 속성을 분석할 수 있는 수준에 다다랐으며 인공지능 기술을 활용하여 사용자에게 추천할 수 있는 서비스가 출시되고 있다. 패션 트렌드의 빠른 변화 및 인공지능 기술의 발전으로 이를 활용한 플랫폼에 기반을 두어 디자이너에게는 디자인 기술을 향상시킬 수 있으며 사용자에게는 개인화된 제품을 구매할 수 있는 플랫폼 개발이 요구되고 있다. 본 논문에서는 인공지능 기술 기반 패션 분석 기술 개발을 위하여 패션 검출 모듈, 패션 검색 모듈, 패션 검색을 위한 벡터 검색 모듈, 상하의 분리를 위한 세그먼테이션 모듈, 패션 복종 분류 모듈을 개발하여 통합하였으며 패션 검색 정확도는 Top-5 기준 75.28%, 벡터 검색 속도는 벡터당 0.002m sec 이하, 세그먼테이션 추출 정확도 87.6%이상, 패션 검출 결과 IoU 0.5 환경에서 96.2%, 복종분석 90.54%의 성능을 보였다.
반도체 패키징 공장에서 싸이클타임(Cycle-time)을 정확히 예측하는 것은 납기일 준수를 통해 고객만족도를 향상시킬 수 있고, 보다 효율적인 스케쥴링을 가능하게 하여 공장 가동률을 높일 수 있게 한다. 그러나 반도체 패키징은 제품 종류가 다양하고 제품마다 특화된 기술을 사용할 뿐만 아니라 공정 순서나, WIP에 따라 싸이클타임이 크게 영향을 받아 그 정확한 예측이 매우 어렵기 때문에 현장 전문가의 판단에 의존하는 경우가 많았다. Fab공정의 경우 전문가를 도와 좀 더 정확한 예측에 도움을 주기 위해 그 동안 전통적 통계 기법 및 시뮬레이션에 기반한 의사결정 모형이 많이 연구되었는데, 최근에는 기계학습 및 인공지능 기법을 사용한 연구가 눈에 띄고 있으며 기존의 방법보다 우수한 성능을 보여 주는 것으로 나타났다. 하지만 아직 기계학습 및 인공지능을 이용한 충분한 연구가 진행되지 못하고 있는 실정이다. 따라서 본 연구에서는 사례기반 추론을 사용하여 패키징 공정의 싸이클타임을 예측하고자 하였으며 그 성능을 인공신경망 모형, 의사결정나무 모형, 그리고 해당 분야 전문가의 예측치와 비교하였다. 실험결과에 따르면 사례기반추론 모형이 가장 뛰어난 성능을 보이는 것으로 나타났다.
온라인 상점에서 인공 지능 기술의 채택이 지속적으로 증가하는 중이다. 그러나 각 인공지능 기능이 온라인 쇼핑에 대한 소비자의 지속사용의도에 어떠한 영향을 미치는지 여부를 실증분석한 연구는 거의 없다. 따라서 본 연구의 목적은 실증연구를 통해 온라인 상점의 지속사용의도에 인공지능의 주요 기능이 미치는 영향을 이해하는 것이다. 특히 온라인 상점 자원으로서의 인공지능 기능이 자원 기반관점에서 온라인 상점의 차별성에 어떠한 영향을 미치는지에 초점을 맞추고자 한다. 또한 인공 지능 기능과 지속사용의도 간의 매개 효과로서 온라인 상점 이미지를 고려하였다. 설문은 중국 소비자들을 대상으로 실시하였으며 분석 결과 온라인 상점에서 인공지능 기능의 존재가 자원 기반 관점에서 지속가능성에 긍정적인 영향을 미친다는 것을 알 수 있었다. 또한 인공지능 기능은 제품 및 서비스의 이미지에 긍정적인 영향을 미치며, 인공지능 기능에 의한 온라인 상점 사용 의도에 영향을 미치는 방식에 차이가 있음을 발견했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.