• Title/Summary/Keyword: 인공지능프레임워크

Search Result 120, Processing Time 0.02 seconds

Research study on cognitive IoT platform for fog computing in industrial Internet of Things (산업용 사물인터넷에서 포그 컴퓨팅을 위한 인지 IoT 플랫폼 조사연구)

  • Sunghyuck Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an innovative cognitive IoT framework specifically designed for fog computing (FC) in the context of industrial Internet of Things (IIoT). The discourse in this paper is centered on the intricate design and functional architecture of the Cognitive IoT platform. A crucial feature of this platform is the integration of machine learning (ML) and artificial intelligence (AI), which enhances its operational flexibility and compatibility with a wide range of industrial applications. An exemplary application of this platform is highlighted through the Predictive Maintenance-as-a-Service (PdM-as-a-Service) model, which focuses on real-time monitoring of machine conditions. This model transcends traditional maintenance approaches by leveraging real-time data analytics for maintenance and management operations. Empirical results substantiate the platform's effectiveness within a fog computing milieu, thereby illustrating its transformative potential in the domain of industrial IoT applications. Furthermore, the paper delineates the inherent challenges and prospective research trajectories in the spheres of Cognitive IoT and Fog Computing within the ambit of Industrial Internet of Things (IIoT).

Proposal for the Hourglass-based Public Adoption-Linked National R&D Project Performance Evaluation Framework (Hourglass 기반 공공도입연계형 국가연구개발사업 성과평가 프레임워크 제안: 빅데이터 기반 인공지능 도시계획 기술개발 사업 사례를 바탕으로)

  • SeungHa Lee;Daehwan Kim;Kwang Sik Jeong;Keon Chul Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.31-39
    • /
    • 2023
  • The purpose of this study is to propose a scientific performance evaluation framework for measuring and managing the overall outcome of complex types of projects that are linked to public demand-based commercialization, such as information system projects and public procurement, in integrated national R&D projects. In the case of integrated national R&D projects that involve multiple research institutes to form a single final product, and in the case of demand-based demonstration and commercialization of the project results, the existing evaluation system that evaluates performance based on the short-term outputs of the detailed tasks comprising the R&D project has limitations in evaluating the mid- and long-term effects and practicality of the integrated research products. (Moreover, as the paradigm of national R&D projects is changing to a mission-oriented one that emphasizes efficiency, there is a need to change the performance evaluation of national R&D projects to focus on the effectiveness and practicality of the results.) In this study, we propose a performance evaluation framework from a structural perspective to evaluate the completeness of each national R&D project from a practical perspective, such as its effectiveness, beyond simple short-term output, by utilizing the Hourglass model. In particular, it presents an integrated performance evaluation framework that links the top-down and bottom-up approaches leading to Tool-System-Service-Effect according to the structure of R&D projects. By applying the proposed detailed evaluation indicators and performance evaluation frame to actual national R&D projects, the validity of the indicators and the effectiveness of the proposed performance evaluation frame were verified, and these results are expected to provide academic, policy, and industrial implications for the performance evaluation system of national R&D projects that emphasize efficiency in the future.

Performance Evaluation of Price-based Input Features in Stock Price Prediction using Tensorflow (텐서플로우를 이용한 주가 예측에서 가격-기반 입력 피쳐의 예측 성능 평가)

  • Song, Yoojeong;Lee, Jae Won;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.11
    • /
    • pp.625-631
    • /
    • 2017
  • The stock price prediction for stock markets remains an unsolved problem. Although there have been various overtures and studies to predict the price of stocks scientifically, it is impossible to predict the future precisely. However, stock price predictions have been a subject of interest in a variety of related fields such as economics, mathematics, physics, and computer science. In this paper, we will study fluctuation patterns of stock prices and predict future trends using the Deep learning. Therefore, this study presents the three deep learning models using Tensorflow, an open source framework in which each learning model accepts different input features. We expand the previous study that used simple price data. We measured the performance of three predictive models increasing the number of priced-based input features. Through this experiment, we measured the performance change of the predictive model depending on the price-based input features. Finally, we compared and analyzed the experiment result to evaluate the impact of the price-based input features in stock price prediction.

Real Time SW Sizing Model for FP-Based Fintech Software Development Project (FP 기반의 핀테크 소프트웨어 개발 프로젝트 실시간 규모 산정 모델)

  • Koo, Kyung-Mo;Yoon, Byung-Un;Kim, Dong-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.36-44
    • /
    • 2021
  • Estimation on SW Sizing applied to fintech is very difficult, a task requiring long time, it is difficult for client companies and developer companies to accurately calculate the size of software development. The size is generally estimated based on the experience of project managers and the general functional scoring method. In this paper, propose a model that can be applied to fintech development projects by quantitatively calculating the required functions from the user's point of view, measuring the scale, and calculating the scale in real time. Through the proposed model, the amount of work can be estimated prior to development and the size can be measured, and the M/M and the estimated quotation amount can be calculated based on the program list by each layer. In future studies, by securing size computation data on existing the Fintech Project in mass, research on accurate size computation would be required.

AR Tourism Service Framework Using YOLOv3 Object Detection (YOLOv3 객체 검출을 이용한 AR 관광 서비스 프레임워크)

  • Kim, In-Seon;Jeong, Chi-Seo;Jung, Kye-Dong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.195-200
    • /
    • 2021
  • With the development of transportation and mobiles demand for tourism travel is increasing and related industries are also developing significantly. The combination of augmented reality and tourism contents one of the areas of digital media technology, is also actively being studied, and artificial intelligence is already combined with the tourism industry in various directions, enriching tourists' travel experiences. In this paper, we propose a system that scans miniature models produced by reducing tourist areas, finds the relevant tourist sites based on models learned using deep learning in advance, and provides relevant information and 3D models as AR services. Because model learning and object detection are carried out using YOLOv3 neural networks, one of various deep learning neural networks, object detection can be performed at a fast rate to provide real-time service.

A Study on the Intention to use the Artificial Intelligence-based Drug Discovery and Development System using TOE Framework and Value-based Adoption Model (TOE 프레임워크와 가치기반수용모형 기반의 인공지능 신약개발 시스템 활용의도에 관한 실증 연구)

  • Kim, Yeongdae;Lee, Won Suk;Jang, Sang-hyun;Shin, Yongtae
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.41-56
    • /
    • 2021
  • New drug discovery and development research enable clinical treatment that saves human life and improves the quality of life, but the possibility of success with new drugs is significantly low despite a long time of 14 to 16 years and a large investment of 2 to 3 trillion won in traditional methods. As artificial intelligence is expected to radically change the new drug development paradigm, artificial intelligence new drug discovery and development projects are underway in various forms of collaboration, such as joint research between global pharmaceutical companies and IT companies, and government-private consortiums. This study uses the TOE framework and the Value-based Adoption Model, and the technical, organizational, and environmental factors that should be considered for the acceptance of AI technology at the level of the new drug research organization are the value of artificial intelligence technology. By analyzing the explanatory power of the relationship between perception and intention to use, it is intended to derive practical implications. Therefore, in this work, we present a research model in which technical, organizational, and environmental factors affecting the introduction of artificial intelligence technologies are mediated by strategic value recognition that takes into account all factors of benefit and sacrifice. Empirical analysis shows that usefulness, technicality, and innovativeness have significantly affected the perceived value of AI drug development systems, and that social influence and technology support infrastructure have significant impact on AI Drug Discovery and Development systems.

Design and Utilization of Connected Data Architecture-based AI Service of Mass Distributed Abyss Storage (대용량 분산 Abyss 스토리지의 CDA (Connected Data Architecture) 기반 AI 서비스의 설계 및 활용)

  • Cha, ByungRae;Park, Sun;Seo, JaeHyun;Kim, JongWon;Shin, Byeong-Chun
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.99-107
    • /
    • 2021
  • In addition to the 4th Industrial Revolution and Industry 4.0, the recent megatrends in the ICT field are Big-data, IoT, Cloud Computing, and Artificial Intelligence. Therefore, rapid digital transformation according to the convergence of various industrial areas and ICT fields is an ongoing trend that is due to the development of technology of AI services suitable for the era of the 4th industrial revolution and the development of subdivided technologies such as (Business Intelligence), IA (Intelligent Analytics, BI + AI), AIoT (Artificial Intelligence of Things), AIOPS (Artificial Intelligence for IT Operations), and RPA 2.0 (Robotic Process Automation + AI). This study aims to integrate and advance various machine learning services of infrastructure-side GPU, CDA (Connected Data Architecture) framework, and AI based on mass distributed Abyss storage in accordance with these technical situations. Also, we want to utilize AI business revenue model in various industries.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.

Feature Representation Method to Improve Image Classification Performance in FPGA Embedded Boards Based on Neuromorphic Architecture (뉴로모픽 구조 기반 FPGA 임베디드 보드에서 이미지 분류 성능 향상을 위한 특징 표현 방법 연구)

  • Jeong, Jae-Hyeok;Jung, Jinman;Yun, Young-Sun
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.161-172
    • /
    • 2021
  • Neuromorphic architecture is drawing attention as a next-generation computing that supports artificial intelligence technology with low energy. However, FPGA embedded boards based on Neuromorphic architecturehave limited resources due to size and power. In this paper, we compared and evaluated the image reduction method using the interpolation method that rescales the size without considering the feature points and the DCT (Discrete Cosine Transform) method that preserves the feature points as much as possible based on energy. The scaled images were compared and analyzed for accuracy through CNN (Convolutional Neural Networks) in a PC environment and in the Nengo framework of an FPGA embedded board.. As a result of the experiment, DCT based classification showed about 1.9% higher performance than that of interpolation representation in both CNN and FPGA nengo environments. Based on the experimental results, when the DCT method is used in a limited resource environment such as an embedded board, a lot of resources are allocated to the expression of neurons used for classification, and the recognition rate is expected to increase.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.