• 제목/요약/키워드: 인공지능모델

검색결과 1,590건 처리시간 0.027초

멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용 (Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network)

  • 하태준;김희상;강성욱;이두희;김우진;문기원;최현수;김정현;김윤;박소현;박상원
    • 한국방사선학회논문지
    • /
    • 제18권3호
    • /
    • pp.187-201
    • /
    • 2024
  • 골다공증은 전 세계적으로 주요한 건강 문제임에도 불구하고, 골절 발생 전까지 쉽게 발견되지 않는 단점을 가지고 있습니다. 본 연구에서는 골다공증 조기 발견 능력 향상을 위해, 복부 컴퓨터 단층 촬영(Computed Tomography, CT) 영상을 활용하여 정상-골감소증-골다공증으로 구분되는 골다공증 단계를 체계적으로 분류할 수 있는 딥러닝(Deep learning, DL) 시스템을 개발하였습니다. 총 3,012개의 조영제 향상 복부 CT 영상과 개별 환자의 이중 에너지 X선 흡수 계측법(Dual-Energy X-ray Absorptiometry, DXA)으로 얻은 T-점수를 활용하여 딥러닝 모델 개발을 수행하였습니다. 모든 딥러닝 모델은 비정형 이미지 데이터, 정형 인구 통계 정보 및 비정형 영상 데이터와 정형 데이터를 동시에 활용하는 다중 모달 방법에 각각 모델 구현을 실현하였으며, 모든 환자들은 T-점수를 통해 정상, 골감소증 및 골다공증 그룹으로 분류되었습니다. 가장 높은 정확도를 갖는 모델 우수성은 비정형-정형 결합 데이터 모델이 가장 우수하였으며, 수신자 조작 특성 곡선 아래 면적이 0.94와 정확도가 0.80를 제시하였습니다. 구현된 딥러닝 모델은 그라디언트 가중치 클래스 활성화 매핑(Gradient-weighted Class Activation Mapping, Grad-CAM)을 통해 해석되어 이미지 내에서 임상적으로 관련된 특징을 강조했고, 대퇴 경부가 골다공증을 통해 골절 발생이 높은 위험 부위임을 밝혔습니다. 이 연구는 DL이 임상 데이터에서 골다공증 단계를 정확하게 식별할 수 있음을 보여주며, 조기에 골다공증을 탐지하고 적절한 치료로 골절 위험을 줄일 수 있는 복부 컴퓨터 단층 촬영 영상의 잠재력을 제시할 수 있습니다.

복합 적층판의 딥러닝 기반 파괴 모드 결정 (Deep Learning-based Fracture Mode Determination in Composite Laminates)

  • 무하마드 무자밀 아자드;아타 우르 레만 샤;M.N. 프라브하카르;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2024
  • 본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행하는 데 효과적이라는 것을 알 수 있다.

상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구 (A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle)

  • 김준섭;림빈 보니카;성낙준;홍민
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.17-23
    • /
    • 2020
  • 인간의 특성과 관련된 측정 항목을 나타내는 생체정보는 도난이나 분실의 염려가 없으므로 높은 신뢰성을 가진 보안 기술로서 큰 주목을 받고 있다. 이러한 생체정보 중 지문은 본인 인증, 신원 파악 등의 분야에 주로 사용된다. 신원을 파악할 때 지문 이미지에 인증을 수행하기 어려운 상처, 주름, 습기 등의 문제가 있을 경우, 지문 전문가가 전처리단계를 통해 직접 지문에 어떠한 문제가 있는지 파악하고 문제에 맞는 영상처리 알고리즘을 적용해 문제를 해결한다. 이때 지문에 상처와 주름이 있는 지문 영상을 판별해주는 인공지능 소프트웨어를 구현하면 손쉽게 상처나 주름의 여부를 확인할 수 있고, 알맞은 알고리즘을 선정해 쉽게 지문 이미지를 개선할 수 있다. 본 연구에서는 이러한 인공지능 소프트웨어의 개발을 위해 캄보디아 왕립대학교의 학생 1,010명, Sokoto 오픈 데이터셋 600명, 국내 학생 98명의 모든 손가락 지문을 취득해 총 17,080개의 지문 데이터베이스를 구축했다. 구축한 데이터베이스에서 상처나 주름이 있는 경우를 판별하기 위해 기준을 확립하고 전문가의 검증을 거쳐 데이터 어노테이션을 진행했다. 트레이닝 데이터셋과 테스트 데이터셋은 캄보디아의 데이터, Sokoto 데이터로 구성하였으며 비율을 8:2로 설정했다. 그리고 국내 학생 98명의 데이터를 검증 데이터 셋으로 설정했다, 구성된 데이터셋을 사용해 Classic CNN, AlexNet, VGG-16, Resnet50, Yolo v3 등의 다섯 가지 CNN 기반 아키텍처를 구현해 학습을 진행했으며 지문의 상처와 주름 판독에서 가장 좋은 성능을 보이는 모델을 찾는 연구를 수행했다. 다섯가지 아키텍처 중 지문 영상에서 상처와 주름 여부를 가장 잘 판별할 수 있는 아키텍처는 ResNet50으로 검증 결과 81.51%로 가장 좋은 성능을 보였다.

시뮬라시옹과 포스트-재현 - 알고리즘 아트를 중심으로 (Simulation and Post-representation: a study of Algorithmic Art)

  • 이수진
    • 기호학연구
    • /
    • 제56호
    • /
    • pp.45-70
    • /
    • 2018
  • 르네상스 이후부터 지속되어 온 재현체계에 관한 포스트모던 철학의 비판은 시각주체의 경험과 대상을 분리하고, 환경과 인간을 분리하는 이분법적인 사고체계에 관한 비판으로 궤를 같이 한다. 1960년대 포스트모던한 흐름으로 등장한 일련의 작품에서 강조된 상호작용성은 1990년대 후반 디지털 아트의 인터랙티브한 차원으로 계승되었다. 디지털 아트의 핵심적인 특성은 현장에서 관객의 참여에 따라 예측할 수 없는 결과 혹은 저마다의 미세한 변화를 반영한 무한대의 변이들을 만들어낸다는 점이다. 이 과정에서 컴퓨터 프로그램의 중요성이 부각되고, 기존 프로그램을 그대로 차용하는 것이 아니라, 아티스트가 직접 알고리즘을 작성하고 프로그래밍하는 경우 혹은 프로그래머와 협업을 통해 고유한 알고리즘을 만들어내는 경우가 점점 증가하고 있다. 프로그래밍 자체를 창작 행위로 간주해야 하는 패러다임으로 전환되는 중이라고 말할 수도 있겠다. 현재 주목받고 있는 시뮬레이션과 VR 기술은 현실의 감각과 시공간을 재현해내는 기술로 각광받고 있는데, 시뮬레이션 기술이 예술 분야에 도입되면서, 실험적인 작품들이 창작되는 중이다. 장 보드리야르가 제시한 시뮬라시옹 개념은 '어떤 현실을 본따 매우 사실적으로 만듦'을 대변하는 개념이라기보다는 '실재하는 현실과 어떤 관계를 맺고 있는 전혀 다른 현실'을 주목하게 만드는 개념이다. 이때 시뮬라시옹은 진실과 거짓의 문제를 따질 주제가 아니라, 형이상학적인 의미가 없는, 전통적인 실재와는 전혀 다른 성질의 실재를 지칭한다. 전통적인 질서에서 이미지가 실재 세계의 재현에 대응했다면, 알고리즘 아트의 시뮬레이션 이미지들 그리고 시뮬레이션된 시공간은 '체험을 용이하게 만드는 예술 형식'이라 할 수 있다. 다수의 알고리즘 아트는 상황, 현실, 생태계, 생명체 등의 복합적인 속성을 시스템으로 모델화하여 (특정 혹은 개별) 대상을 구조화하고 활성화하는 데 목표를 두고 있으며, 세계의 시뮬라시옹에 주목한다. 본 논문에서는 세계의 시뮬라시옹을 다루는 이안 쳉의 작품을 통해, 21세기 인공지능 기술의 등장과 함께 변화하고 있는 문화예술의 패러다임을 살펴보고자 한다. 또한 이안 쳉의 라이브 시뮬레이션과 같은 새로운 형식의 콘텐츠 앞에서 우리가 취해야 하는 태도 역시 논의하게 될 것이다. 사실 새로운 형식의 작품을 대면하는 순간은 전통적인 형식의 작품보다 훨씬 더 능동적인 입장을 요구한다. 본 논문이 제시하는 포스트-재현 형식의 문화예술 작품은 개인적인 경험의 순간에 이루어지는 감각과 지각 과정이 완성이나 종결로 수렴될 수 없음을 기술로 구현하고 있다. 이때 관객에게 요구되는 것은 바로 능동적 인식과 상황적 지식임을 이야기하고자 한다.

해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구 (An Outlier Detection Using Autoencoder for Ocean Observation Data)

  • 김현재;김동훈;임채욱;신용탁;이상철;최영진;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제33권6호
    • /
    • pp.265-274
    • /
    • 2021
  • 해양 이상 자료 탐지의 연구는 이전부터 활발하게 이루어지고 있으며, 통계 및 거리 기반의 기계 학습 알고리즘을 활용하는 기법들이 개발되었다. 최근에는 AI 기반의 해양 자료 이상 탐지 기법이 많은 관심을 받고 있으며, AI를 활용한 해양 이상 자료 탐지 기법은 정답이 주어지는 지도학습 기법이 주를 이루고 있다. 이러한 방법은 학습에 필요한 모든 자료에 수작업으로 분류 정보(라벨)를 지정해야 한다는 점에서 많은 시간과 비용이 요구된다. 본 연구에서는 이러한 문제를 극복하기 위해 비지도학습 기반의 오토인코더를 이상 자료 탐지 기법에 사용하였다. 실험으로는 오토인코더의 평가를 위해 단변수·다변수학습 두가지 실험을 구성하였고, 단변수 학습은 기상청에서 제공하는 덕적도 부이 정점 관측 자료 중 수온만 사용하였으며, 다변수 학습은 수온과 기온, 풍향, 풍속, 기압, 습도 등을 사용하였다. 사용기간은 1996~2020년의 25년간이며 학습 자료에 해양-기상 자료의 특성을 고려한 전처리 기법을 적용하였다. 학습된 다변수와 단변수 오토인코더를 활용하여 실제 표층 수온에 대한 이상 탐지를 시도하였다. 모델성능 비교를 위해 오차를 삽입한 합성 자료에 다변수와 단변수 오토인코더를 포함한 여러 이상 탐지 기법을 적용하여 정량적으로 평가하였으며, 다변수/단변수의 정확도가 각각 약 96%/91%로써 다변수 오토인코더가 더 나은 이상자료 탐지 성능을 보였다. 오토인코더를 이용한 비지도학습 기반 이상 탐지 기법은 주관적 판단에 의한 오류와 자료 라벨링에 필요한 시간과 비용을 줄일 수 있다는 점에서 다양하게 활용될 것으로 판단된다.

생성형 AI의 의료적 활용과 개인정보보호 (A Study on the Medical Application and Personal Information Protection of Generative AI)

  • 이수경
    • 의료법학
    • /
    • 제24권4호
    • /
    • pp.67-101
    • /
    • 2023
  • 생성형 AI의 활용은 교육계를 넘어서 이미 의료계에서도 의료 기기에 임상 소프트웨어 등의 도입 등으로 연구되고 있다. 생성형 AI는 대규모 대화형 언어모델을 활용하여 방대한 데이터를 이해하고 자료를 선별하는 시간과 에너지를 줄여주면서 사용자와 끊임없는 대화를 통한 정보의 전달이 가능하다. 바로 이러한 점이 인류에게 생성형 AI가 혁신적인 기술의 등장으로 인정받고 있는 점이기도 하다. 그러나 반면 사용자에게 제공되는 컨텐츠의 정합성은 출처나 근거 없이 사용자에게 판단의 영역으로 맡겨지고 있다. 그러나 이 글에서는 생성형 AI를 활용함에 있어서 가장 직접적으로 발생할 수 있는 쟁점을 우선적으로 살펴보기로 한다. 따라서 이 글에서는 생성형 AI의 대표적인 프로그램인 Chat GPT의 발전과 이용자의 활용에 대비하여 특히 개인정보 보호의 쟁점에 대하여 논의하였다. 이를 위하여 먼저 생성형 AI의 기술적인 특성을 살펴본 뒤에 발생 가능한 민사적 쟁점 가운데에서도 개인정보 보호에 관한 문제를 우선적으로 살펴보았다. 생성형 AI는 그 자체로서 학습 데이터의 편향이나 출처 없는 결과값의 제공 등 여러 문제점이 제기되고 있으나, 이러한 문제점은 윤리적 문제를 내포하는 것으로 당장 임상 소프트웨어로서 의료기기에서 활용될 경우 개인정보 보호법제와 보건의료데이터의 활용 가이드로 환자 혹은 이용자의 개인정보를 보호할 수 있을 것인가에 대한 의문에 대한 논의가 시급하다고 판단되었다. 우리나라의 개인정보 보호법제는 특히 보건의료데이터의 활용에서 특정 개인의 개인정보를 가명처리하고 비식별조치를 취하는 데에 적절한 프로세스를 갖추고 있는 것으로 보이나, 생성형 AI이 소프트웨어로서 의료기기에 적용되었을 경우에도 이 법제로서 개인정보 보호의 목적을 이루기에는 어려운 점이 있다. 임상 소프트웨어에서 활용될 생성형 AI의 기능을 대비하기 위해서는 생성형 AI에 걸맞는 개인정보 보호의 법제가 필요할 것으로 보인다.

불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델 (A Hybrid SVM Classifier for Imbalanced Data Sets)

  • 이재식;권종구
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.125-140
    • /
    • 2013
  • 어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.

차세대 소프트웨어(SW)교육 표준 모델 개발 (Development a Standard Curriculum Model of Next-generation Software Education)

  • 김갑수;구덕회;김성백;김수환;김영식;김자미;김재현;김창석;김철;김한일;김현철;박남제;박정호;박판우;서인순;서정연;성영훈;송태옥;이영준;이재호;이정서;이현아;이형옥;전수진;전용주;정영식;정인기;최숙영;최정원;한선관
    • 정보교육학회논문지
    • /
    • 제24권4호
    • /
    • pp.337-367
    • /
    • 2020
  • 본 연구에서는 미래 인재 양성을 위한 SW교육의 확대 및 차기 개정 교육과정에서 초·중·고의 일관성 있는 SW교육 적용 체계를 마련하기 위해 차세대 SW교육 표준모델을 개발하였다. 2017~2018년 학계에서 수행된 초·중등 SW교육 표준 모델 연구를 바탕으로 국내외 SW교육에 관한 기초 조사 및 분석, 유관기관 및 전문가 공개 포럼, 글로벌 SW교육 워크샵, 대국민 공청회 등을 통해 초·중·고등학교 SW 교육을 위한 일관성 있는 적용 체계를 갖추고, 이후 고등교육 및 산업분야에 연계가능한 차세대 SW교육 표준 모델을 개발하였다.

O4O 선택속성이 고객만족도 및 고객충성도에 미치는 영향: 중국 허마셴셩 사례를 중심으로 (The Impact of O4O Selection Attributes on Customer Satisfaction and Loyalty: Focusing on the Case of Fresh Hema in China)

  • 최성국;양성병
    • 지식경영연구
    • /
    • 제21권3호
    • /
    • pp.249-269
    • /
    • 2020
  • 최근 온라인 시장이 성숙해지면서, 추가 성장을 가로막는 많은 문제점이 드러나고 있는데, 이 중 가장 대표적인 문제는 온라인 상품의 동질화로 인한 고객수의 정체를 꼽을 수 있다. 최근 몇 년 사이 온라인 시장의 비중은 많이 증가하였지만, 이제 오프라인으로 영역을 확장하지 않고서는 더 이상의 발전을 기대하기 힘든 상황에 이른 것이다. 이에, 국내외 많은 온라인 기업들은 온라인 채널의 장점에 더해 온라인 플랫폼의 한계를 보완할 수 있는 오프라인 공간을 함께 확보함으로써, 사업영역 및 마케팅 채널을 확대하고자 노력하고 있다. 정보기술(빅데이터, 인공지능 등)을 활용한 대량의 고객 데이터 분석이라는 그들의 경쟁우위를 바탕으로, O4O(Online for Offline) 비즈니스 모델을 구현함으로써, 오프라인으로의 영향력을 꾸준히 강화해나가고 있는 것이다. 한편, 기존의 관련 연구들은 대부분 O2O(Online to Offline) 비즈니스 모델에만 초점을 맞추고 있으며, 최근 몇 년 동안 다양한 산업 분야에서 활발히 시도되고 있는 O4O 비즈니스 모델에 대한 학문적 시도는 아직 많이 부족한 실정이다. 그나마 존재하는 몇몇의 O4O 관련 연구들도 사례분석 및 체험마케팅 기반의 연구에 그치고 있어, O4O 기반 선택속성들과 이들이 고객만족도 및 고객충성도에 미치는 영향에 대한 실증연구가 시급한 상황이다. 이에 본 연구에서는 중국의 대표적인 O4O 비즈니스 모델인 허마셴셩(盒馬鮮生)을 중심으로, 고객의 관점에서 O4O 서비스에 특화된 주요 선택속성을 도출한 후, 이러한 선택속성들이 고객만족도 및 고객충성도에 미치는 영향을 실증해 보고자 한다. 300명의 O4O(허마셴셩) 이용 경험이 있는 고객을 대상으로 한 설문 표본을 구조방정식모델을 활용해 분석한 결과, 총 7개의 O4O 선택속성 가운데 4개(모바일앱품질, 모바일결제, 상품품질 및 매장시설)가 고객만족도에 영향을 미치는 것으로 나타났으며, 고객만족도는 다시 고객충성도(재이용의도, 추천의도 및 브랜드애착)에 유의한 영향을 미치는 것으로 조사되었다. 본 연구의 결과는 O4O 서비스 분야의 관리자가 빠르게 변화하는 고객요구에 잘 적응하고, 나아가 어떤 선택속성에 더 많은 자원을 할당함으로써 고객만족도 및 고객충성도를 제고할 수 있는지를 알려주는 중요한 가이드라인 역할을 할 수 있을 것으로 기대한다.

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • 이준형;박지민;김상훈;한에스더;맹성호;한지유
    • 생명과학회지
    • /
    • 제34권5호
    • /
    • pp.339-355
    • /
    • 2024
  • 폐는 생리학적 기능과 해부 조직학적 구조 측면을 통합적으로 고려하여 분석해야만 하는 매우 복잡한 조직이기 때문에 폐질환의 병리학적 연구와 흡입독성 평가에 현재까지 주로 동물모델을 사용하고 있다. 그러나 실험동물 윤리와 동물복지를 이유로 점차적으로 실험동물 수를 줄이자는 전세계적인 움직임에 맞춰 생체 외 동물실험 대체법들이 집중적으로 개발되고 있다. 특히 경제협력개발기구(OECD)와 미국 환경보호청(USEPA)은 2030년대 이후, 동물실험을 금지하기로 잠정적으로 합의함에 따라 의생명공학과 제약 분야에서 생체 외 흡입 독성 및 폐질환 모델들을 확립하고 개발된 모델을 이용한 평가 법들의 표준화 연구가 활발하다. 그 모델 중에 예를 들어, 생체칩(organ-on-a-chip, OoC) 및 오가노이드(organoid) 모델은 3차원 바이오 프린터, 미세 유체 시스템, 인공지능(artificial intelligent) 기술들과 접목되어 연구되고 있다. 이러한 생체 장기를 모방한 복합 장기 생체 외 모델링 시스템은 개체 차이를 가지는 생체 내 동물 실험에 비해 복잡한 생물학적 환경을 보다 정확하게 모방할 수 있을 것으로 기대되고 있으나 생체 모방성, 재현성, 민감성, 기반 데이터베이스의 부족 등 아직은 여러 한계점도 가지고 있다. 따라서 본 리뷰 논문에서는 만능성 줄기 세포 또는 암세포를 이용한 폐포, 폐 공기액 인터페이스(air-liquid interface, ALI) 시스템, 트랜스웰 멤브레인(transwell membrane)을 포함하여 폐 OoC 및 오가노이드의 최근 생체 외 폐 시스템 연구결과들과 AI와 접목된 인실리코(in silico) 폐 모델링에 대한 결과들의 현황을 살펴보고자 한다.