• Title/Summary/Keyword: 인공지능망

Search Result 661, Processing Time 0.028 seconds

유전자 알고리즘을 활용한 인공지능 예측모형간 결합 기법: 주식시장에의 응용

  • Ahn, Hyeon-Cheol;Lee, Hyeong-Yong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.141-148
    • /
    • 2008
  • 각종 인공지능 기법들을 활용하여, 주식시장의 흐름을 예측하려는 연구가 지금까지 많은 인공지능 및 금융공학의 연구자들에 의해 시도되어 왔으며, 그 결과 다양한 인공지능 기법들이 예측 방법론으로 제시되어 왔다. 이런 가운데 서로 다른 예측모형들이 산출하는 예측결과를 종합 - 보완하는 결합기법에 관련된 연구가 90년대 후반부터 오늘날까지 꾸준하게 발표되고 있다. 본 연구 역시 유전자 알고리즘 기반의 새로 인공지능 예측모형간 결합기법을 제시하고 있다. 다만, 기존의 연구모형들이 각 개별모형 결과의 상대적 가중치에 초점을 맞추고 있었다면, 본 연구의 제안모형은 등락을 판단하는데 활용되는 임계치까지 유전자 알고리즘을 이용해 동시에 최적화하도록 설계되어 있다는 점에서 차별화된다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 지난 1998년부터 2007년까지의 KOSPI 지수 등락 예측을 위해 구축된 로지스틱 회귀모형, 인공신경망, SVM모형의 결과들을 제안모형을 이용해 결합하였다. 그 결과, 예측력 향상에 본 연구의 제안모형이 기여 할 수 있음을 확인 할 수 있었다.

  • PDF

Trend Analysis of Korea Papers in the Fields of 'Artificial Intelligence', 'Machine Learning' and 'Deep Learning' ('인공지능', '기계학습', '딥 러닝' 분야의 국내 논문 동향 분석)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.4
    • /
    • pp.283-292
    • /
    • 2020
  • Artificial intelligence, which is one of the representative images of the 4th industrial revolution, has been highly recognized since 2016. This paper analyzed domestic paper trends for 'Artificial Intelligence', 'Machine Learning', and 'Deep Learning' among the domestic papers provided by the Korea Academic Education and Information Service. There are approximately 10,000 searched papers, and word count analysis, topic modeling and semantic network is used to analyze paper's trends. As a result of analyzing the extracted papers, compared to 2015, in 2016, it increased 600% in the field of artificial intelligence, 176% in machine learning, and 316% in the field of deep learning. In machine learning, a support vector machine model has been studied, and in deep learning, convolutional neural networks using TensorFlow are widely used in deep learning. This paper can provide help in setting future research directions in the fields of 'artificial intelligence', 'machine learning', and 'deep learning'.

일상어휘를 기반으로 한 선물 가격 예측모형의 계발

  • 김광용;이승용
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.291-300
    • /
    • 1999
  • 본 논문은 인공신경망과 귀납적 학습방법 등의 인공지능 방법과 선물가격결정에 대한 기존 재무이론을 사용하여 일상어취로 표현되는 파생상품 가격예측 모형을 개발하는데 있다. 모형의 개발은 1단계로 인공신경망이나 기존의 선물가격결정이론(평균보 유비용모형이나 일반균형모형)을 이용하여 선물 가격을 예측한 후, 서로 비교 분석하여 인공신경망 모형의 우수성을 확인하였다. 귀납적 학습방법중 CART 알고리듬을 사용하여 If-Then 규칙을 생성하였다. 특히 실용적 측면에서 선물가격의 일상어휘화를 통한 모형개발을 여러 가지 방법으로 시도하였다. 이러한 선물가격 예측모형의 유용성은 일단 If-Then 규칙으로 표현되어 전문가의 판단에 확실한 이론적인 근거를 제시할 수 있는 장점이 있으며, 특히 의사결정지원시스템으로 활용화 될 경우 매우 유용한 근거자료로 활용될 수 있다. 이러한 선물가격 예측모형의 정확성은 분석표본과 검증표본으로 나누어 검증표본에서 세가지 기본모형(평균보유 비용모형, 일반균형모형, 인공신경망 모형)과 각 모형의 귀납적 학습방법 모형의 다른 3가지 어휘표현방법 3가지를 모형별로 비교 분석하였다. 분석결과 인공신경망모형은 상당한 예측력을 갖고 있는 것으로 판명되었으며, 특히 CART를 기반으로 한 일상어취 기반의 선물가격예측 모형은 예측력이 높은 것으로 나타났다.

  • PDF

Travel Route Scheduling System Utilizing Artificial Neural Networks (인공신경망을 활용한 여행경로 스케줄링 시스템)

  • Kim, Jun-Yeong;Kim, Seog-Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.394-396
    • /
    • 2017
  • 본 논문에서는 최근이슈가 되고 있는 인공지능에 대한 많은 기술 가운데 인공신경망을 활용하여 자신이 가고자 하는곳의 여행정보를 스케줄링 하는 시스템을 제안한다. 인공신경망 중에서도 비지도 학습(unsupervised learning)방식을 이용하며 이용자의 가중치에 따라 여행의 나이, 기간, 장소, 종류, 날씨, 계절, 인원 등으로 여행에서의 요소들을 히든레이어로 구성하여 여행지의 스케줄을 구성하여 이용자에게 제공하는 형태이다. 가중치에 따른 여행지의 분류작업이 완료가 되면 기간과 장소의 위치정보에 따라 스케줄링 작업을 완료하게 된다. 기존의 여행지에 대한 정보를 검색에 의해서 이루어지던 환경에서 인공신경망을 활용하여 원하는 여행정보를 추출함으로써 이용자에게 여행정보에 대한 체계화된 정보를 제공할 수 있다.

  • PDF

Classification of Clothing Using Googlenet Deep Learning and IoT based on Artificial Intelligence (인공지능 기반 구글넷 딥러닝과 IoT를 이용한 의류 분류)

  • Noh, Sun-Kuk
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.41-45
    • /
    • 2020
  • Recently, artificial intelligence (AI) and the Internet of things (IoT), which are represented by machine learning and deep learning among IT technologies related to the Fourth Industrial Revolution, are applied to our real life in various fields through various researches. In this paper, IoT and AI using object recognition technology are applied to classify clothing. For this purpose, the image dataset was taken using webcam and raspberry pi, and GoogLeNet, a convolutional neural network artificial intelligence network, was applied to transfer the photographed image data. The clothing image dataset was classified into two categories (shirtwaist, trousers): 900 clean images, 900 loss images, and total 1800 images. The classification measurement results showed that the accuracy of the clean clothing image was about 97.78%. In conclusion, the study confirmed the applicability of other objects using artificial intelligence networks on the Internet of Things based platform through the measurement results and the supplementation of more image data in the future.

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • Jung, Yoon;Hwang, Seok-Hae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA:multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 등이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적 요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation)알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉층의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.

  • PDF

심혈관 시뮬레이션 데이터 기반의 심혈관 혈류역학 예측용 인공지능 개발

  • Lee, Gyeong-Eun;Kim, Jung-Jae;Lee, Seo-Ho;Sin, Seong-Ung;Bang, Hyeon-Gi;Kim, Gi-Tae;Ryu, A-Jin;Lee, Jong-Ho;Kim, Gi-Tae;Park, Seon-Yeol;Lee, Yeong-Gwon;Sim, Eun-Bo
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.712-714
    • /
    • 2017
  • 미병의 예방과 관리의 중요성이 거론되고 있으나, 미병에 대한 분류나 진단을 위한 확고한 근거가 미약한 상황으로서 미병 진단 인자 분류를 위한 생리시스템 모델 개발이 필요한 시점이다. 본 연구의 목적은 개발한 생리학적 모델이 미병 단계를 구별하는데 효과 및 유용성이 있는지를 임상 검증하기 위하여 생리학적 모델 인공지능 시뮬레이션을 개발하고자 함이다. 인공지능 계산은 3층으로 구성된 네트워크를 이용하였으며 각 층은 30개의 neuron들로 구성하였다. 인공지능망의 입력 값은 나이, 수축기 혈압, 이완기 혈압, 심박수 값 (입력 값 4개)이고 출력 값은 혈관 저항값인 Ra이다. 머신러닝 차수를 높이면서 인공지능을 사용하지 않은 생리적 모델로부터 도출된 결과와 인공지능을 통하여 계산된 결과를 비교하였다. 개발된 인공지능계산을 이용한 생리시스템 모델은 대량의 표본집단에서 임상 검증에 기여할 것이다.

  • PDF

Prediction of maximum tsunami heights using neural network (인공신경망기반의 최대 지진해일고 예측)

  • Min-Jong Song;Yong-Sik Cho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.484-484
    • /
    • 2023
  • 지진해일은 해저지진, 화산활동, 해저 산사태 등에 의해 발생되는 장주기 파랑이다. 지진해일은 발생빈도가 낮지만, 한번 발생하면 많은 에너지가 연안으로 유입되어 인명 및 재산피해를 야기 시킬 수 있다. 따라서, 과거 수십년동안 지진해일에 대한 연구는 지진해일의 역학관계를 이해하고, 이를 바탕으로 한 수치모델 개발에 초점을 두어 연구가 진행되어 왔다. 더욱이, 지진해일 실험적 연구는 많은 경제적 비용을 지불해야 하기에 수치모델개발 연구가 더욱 중점적으로 수행되어 왔다. 지리학적으로 우리나라는 지진해일에 안전하지 못하다. 하나의 예로, 1983년 5월 26일, 일본 서해안에서 발생한 지진해일은 동해로 전파되어 동해안 지역에 커다란 피해를 야기시켰다. 이 당시, 강원도삼척시 원덕읍에 위치한 임원항에서는 2명의 사상자와 2명의 부상자가 발생하였고, 당시 금액으로 약3억원의 재산피해가 발생하였다. 이 연구는 인공지능 기법 중 하나인 인공신경망을 이용하여 인명과 재산피해가 발생한 임원항에서 최대지진해일고를 예측하고자 하였다. 지진해일 수치모델은 뛰어난 정확도를 나타내는 반면, 결과를 산출하는데 상당한 시간을 필요로 한다. 이에 반해, 인공신경망은 수치모델과 유사한 정확도 및 결과를 신속하게 제공할 수 있다는 장점을 가지고 있다. 지진해일 인공신경망 모델 개발은 지진의 단층파라미터를 바탕으로 작성된 지진해일의 시나리오를 토대로 연구가 진행되었고, 우리나라 동해에 위치한 외해 관측 지점의 지진해일고 자료를 통해, 임원항에서의 최대 지진해일고가 예측되도록 개발되었다. 이를 위하여, 인공신경망의 학습 및 검증 과정을 수행하였고, 향후 발생 가능한 다양한 지진해일에 대해 평가함으로써, 인공신경망 모델의 예측성능을 확인하였다.

  • PDF

Efficient Gait Data Selection Using Explainable AI (해석 가능한 인공지능을 이용한 보행 데이터의 효율적인 선택)

  • Choi, Young-Chan;Tae, Min-Woo;Choi, Sang-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.315-316
    • /
    • 2022
  • 본 논문은 스마트 인솔의 압력 데이터를 이용하는 컨볼루션 신경망 모델에 해석가능한 인공지능 방법인 Grad-CAM을 적용하는 방법을 제안한다. 학습된 각 모델에 Grad-CAM을 적용하여 모델에서 중요한 역할을 하는 압력센서와 중요하지 않은 압력센서를 알아내는 방법을 제안하고 데이터마다 학습을 진행하고 학습된 모델을 통해 실제로 중요한 압력센서와 그렇지 않은 압력센서에 대해서 알아본다.

  • PDF