• 제목/요약/키워드: 인공지능망

검색결과 661건 처리시간 0.028초

영농형 태양광 발전소에서 순환신경망 기반 발전량 예측 시스템 (Recurrent Neural Network based Prediction System of Agricultural Photovoltaic Power Generation)

  • 정설령;고진광;이성근
    • 한국전자통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.825-832
    • /
    • 2022
  • 본 논문은 영농형 태양광 발전 시스템의 전력 생산량을 수집·저장하여 지능적인 예측 모델을 구현하기 위한 예측 및 진단 모델의 설계와 구현에 대해 논한다. 제안된 모델은 시계열 데이터에 특화된 순환신경망 기법인 RNN, LSTM, GRU 모델을 이용하여 태양광 발전량을 예측하고 각 모델의 하이퍼 파라미터를 다르게 주어 비교 분석하고, 성능을 평가했다. 그 결과 세 모델 모두 MSE, RMSE 지표는 0에 매우 가까우며, R2 지표는 1에 가까운 성능을 보였다. 이를 통해 제안하는 예측 모델은 태양광 발전량을 예측하기에 적합한 모델임을 알 수 있고, 이러한 예측을 이용하여 영농형 태양광 시스템에서 지능적인 운영관리 기능에 적용될 수 있음을 보였다.

인공 유기체의 학습 행동이 게임 캐릭터의 전략에 미치는 영향 (Influence of a Game Charaeter′s Strategies On Artificial organism′s learning behavior)

  • 박사준;김성환;김기태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.295-297
    • /
    • 2002
  • 컴퓨터 게임에서의 인공지능은 규칙 기반 추론을 기반으로 한 추론 엔진을 사용하고 있다. 이 규칙 기반 주론 엔진은 비교적 간단하고 구현하기 쉽지만 규칙이 몇 가지 되지 않는다는 것과 규칙 변화가 없는 단점으로 게임 플레이어가 그 규칙들을 쉽게 알아버린다는 문제가 있다. 게임 제작자들은 이런 단점을 극복하고자 게임 플레이어끼리 경쟁을 붙이기 위해서 베틀 넷 등 네트워크 쪽으로 그 단점을 보안하려고 하고 있다. 하지만 오히려 네트워크로의 발전은 더욱 더 인간에 가까운 게임 캐릭터 인공지능을 요구하게 되었으며 규칙 기반 추론 방법으로는 이러한 요구를 충족할 수 없기 때문에 새로운 방법이 필요하게 된 것이다 이 논문에서는 그 새로운 방법에 대한 대척으로 신경망 알고리즘과 유전자 알고리즘을 사용한 인공생명 방법론으로 그 해결책을 모색하려 한다.

  • PDF

인공생명 시뮬레이션을 통한 게임 캐릭터의 전략 구현 (A Strategy Implementation of Game Character Using Artificial Life Simulation)

  • 조남덕;성백균;김기태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.241-243
    • /
    • 2000
  • 컴퓨터 게임에서의 인공지능은 규칙 기반 추론을 기반으로 한 추론 엔진을 사용하고 있다. 이 규칙 기반 추론 엔진은 비교적 간단하고 구현하기 쉽지만 규칙이 몇 가지 되지 않는다는 것과 규칙 변화가 없는 단점으로 게임 플레이어가 그 규칙들을 쉽게 알아버린다는 문제가 있다. 게임 제작자들은 이런 단점을 극복하고자 게임 플러이어끼리 경쟁을 붙이기 위해서 베틀넷 등 네트워크 쪽으로 그 단점을 보안하려고 하고 있다. 하지만 오히려 네트워크론의 발전은 더욱 더 인간에 가까운 게임 캐릭터 인공지능을 요구하게 되었으며 규칙 기반 추론 방법으로는 이러한 요구를 충족할 수 없기 때문에 새로운 방법이 필요하게 된 것이다. 이 논문에서는 그 새로운 방법에 대한 대책으로 신경망 알고리즘과 유전자 알고리즘을 사용한 인공생명 방법론으로 그 해결책을 모색해려 한다.

  • PDF

인공지능기법을 이용한 동적 이미지 도면 부품정보 인식에 관한 연구 (A Study on the Dynamic Image Drawing Part Information Recognition using Artificial Intelligence)

  • 이주상;강성인;이상배
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.449-453
    • /
    • 2006
  • 본 논문은 시설물의 효율적인 유지보수 관리를 위해 이미지 도면의 부품정보를 효율적으로 활용할 수 있는 방안을 제시한다. 시설물 설계 도면에는 시설물을 구성하는 부품에 대한 정보가 표현되어 있고, 각 부품을 구분하기 위해 레전드 문자가 표기되어 있다. 본 논문은 이미지 도면의 레전드 문자 인식을 위해 인공지능 기법을 적용한다. 마지막으로, 본 논문에서 제안한 방법의 효율성을 평가하기 위해 인공지능기법을 도면관리시스템에 적용한다.

인공지능 기법을 이용한 채널할당과 태스크 스케줄링 기법 (Channel Allocation and Task scheduling Scheme Using Artificial Intelligence)

  • 허보진;손동철;김창석;이상용
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.52-57
    • /
    • 2007
  • 한정된 자원을 효율적으로 사용해야하는 이동통신망에서 멀티미디어 서비스 요구에 따른 무선 트래픽 채널을 할당하는 기법은 무선이라는 특수 환경으로 인해 제약을 받을 수밖에 없다. 이동망의 기지국의 경우 여러 무선 가입자 보드로부터 요구되는 서비스별 트래픽요구에 대한 채널 할당과 이에 대한 메인보드에서 처리해야 하는 작업 스케줄링은 무선과 CPU라는 서로 다른 환경을 잘 매핑하는 과제를 안고 있다. 본 논문에서는 음성과 데이터 호를 동시에 서비스하는 셀룰러 시스템에서 멀티미디어 서비스 트래픽 특성을 고려한 주파수할당과 작업 스케줄링이라는 두 가지 요소를 접목할 때 인공지능알고리즘인 유전자알고리즘을 이용하는 방법과 이에 적합한 작업 스케줄링 방식을 제안한다.

  • PDF

사용자 특성에 적응하는 새로운 지능 제어 시스템 (Adaptive Artificial Intelligent illuminator for User′s Characteristic)

  • 정지원;유석용;손동설;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.361-369
    • /
    • 1999
  • 본 논문에서는 플랜트를 사용하는 사용자의 특성을 인공지능을 통하여 학습하여 사용자의 특성에 적응하도록 하는 새로운 지능 제어 시스템을 제안한다. 사용된 인공지능은 신경 회로망이며, 그 중에서도 LVQ(learning Vector Quantization) 네트워크를 사용한다. 제안한 방식의 성능을 확인하기 위하여 IBM PC 상에서 Matlab을 통하여 시뮬레이션 한다.

  • PDF

한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론 (Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology)

  • 임솔이;이원준;이근배;김윤수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF

UAV 및 모바일 기기를 위한 얼굴 표정 인식 네트워크 (Face Expression Recognition Network for UAV and Mobile Device)

  • 최은지;박병준;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.348-351
    • /
    • 2021
  • 최근 자동화의 필요성이 증가함에 따라 얼굴 표정 인식 분야(face expression recognition)가 인공지능과 이미지 처리 분야에서 활발히 연구되고 있다. 본 논문에서는 기존 인공신경망에서 요구되었던 고성능 GPU 환경과 높은 연산량을 극복하고자 모델 경량화(Light weighted Model) 기법을 적용하여 드론 및 모바일 기기에서 적용될 수 있는 얼굴 표정 인식 신경망을 제안한다. 제안하는 방법은 미세한 얼굴의 표정 인식을 위한 방법으로, 입력 이미지의 receptive field 를 늘려 특징 맵의 표현력을 높이는 방법을 제안한다. 또한 효과적인 신경망의 경량화를 위하여, 파라미터의 연산량을 줄일 때 발생하는 문제점을 극복하기 위한 방법을 제시한다. 따라서 제안하는 네트워크를 적용하면 많은 연산량과 느린 연산속도로 인해 제한되었던 네트워크 환경을 극복할 수 있을 뿐만 아니라, UAV(Unmanned Aerial Vehicle, 무인항공기) 및 모바일 기기에서 신경망을 이용한 실시간 얼굴 표정 인식을 할 수 있다.

  • PDF

심층 신경망을 이용한 자연어 지시의 실시간 시각적 접지 (Real-Time Visual Grounding for Natural Language Instructions with Deep Neural Network)

  • 황지수;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.487-490
    • /
    • 2019
  • 시각과 언어 기반의 이동(VLN)은 3차원 실내 환경에서 실시간 입력 영상과 자연어 지시들을 이해함으로써, 에이전트 스스로 목적지까지 이동해야 하는 인공지능 문제이다. 이 문제는 에이전트의 영상 및 자연어 이해 능력뿐만 아니라, 상황 추론과 행동 계획 능력도 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각과 언어 기반의 이동(VLN) 작업을 위한 새로운 심층 신경망 모델을 제안한다. 제안모델에서는 입력 영상에서 합성곱 신경망을 통해 추출하는 시각적 특징과 자연어 지시에서 순환 신경망을 통해 추출하는 언어적 특징 외에, 자연어 지시에서 언급하는 장소와 랜드마크 물체들을 영상에서 별도로 탐지해내고 이들을 추가적으로 행동 선택을 위한 특징들로 이용한다. 다양한 3차원 실내 환경들을 제공하는 Matterport3D 시뮬레이터와 Room-to-Room(R2R) 벤치마크 데이터 집합을 이용한 실험들을 통해, 본 논문에서 제안하는 모델의 높은 성능과 효과를 확인할 수 있었다.

인공미생물체를 위한 진화생태계의 구성과 그 응용 (Constitution of evolution ecosystem for artificial microbes and its applications)

  • 추승우;조환규
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.268-270
    • /
    • 2005
  • 본 논문의 목적은, 간단한 DNA를 기반으로 서로 상호 작용하는 인공미생물체를 위한 진화생태계를 구성하는 것이다. 여기서, 강화 신호를 사용한 신경 회로망의 학습을 통해 인공미생물체의 지능 린 진화과정을 모방해서 자신의 DNA 및 주변 환경에 따라 행동 패턴이 변화하도록 하였다. 또한, 미생물의 진화론적 관점에서 생식 과정에서 두 개체산의 유전자 교환 등이 일어날 수 있도록 하였다. 그리고 이렇게 만들어진 진화생태계의 응용 가능성에 대해 다룬다.

  • PDF