• 제목/요약/키워드: 인공지능기반

검색결과 2,497건 처리시간 0.026초

A Jittering-based Neural Network Ensemble Approach for Regionalized Low-flow Frequency Analysis

  • Ahn, Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.382-382
    • /
    • 2020
  • 과거 많은 연구에서 다수의 모형의 결과를 이용한 앙상블 방법론은 인공지능 모형 (artificial neural network)의 예측 능력에 향상을 갖고 온다 논하였다. 본 연구에서는 미계측유역의 저수량(low flow)의 예측을 위하여 Jittering을 기반으로 한 인공지능 모형을 제시하고자 한다. 기본적인 방법론은 설명변수들에게 백색 잡음(white noise)를 삽입하여 훈련되는 자료를 증가시키는 것이다. Jittering을 기반으로 한 인공지능 모형에 대한 효과를 검증하기 위하여 본 연구에서는 Multi-output neural network model을 기반으로 모형을 구축하였다. 다음으로 Jittering을 기반으로 한 앙상블 모형을 variable importance measuring algorithm과 결합시켜서 유역특성치와 예측되는 저수량의 특성치들의 관계를 추론하였다. 본 연구에서 사용되는 방법론들의 효용성을 평가하기 위해서 미동북부에 위치하고 있는 총 207개의 유역을 사용하였다. 결과적으로 본 연구에서 제시한 Jittering을 기반으로 한 인공지능 앙상블 모형은 단일예측모형 (single modeling approach)을 정확도 측면에서 우수한 것으로 확인되었다. 또한, 적은 숫자의 앙상블 모형에서도 그 정확성이 단일예측모형보다 우수한 것을 확인하였다. 마지막으로 본 연구에서는 유역특성치들의 효과가 살펴보고자 하는 저수량의 특성치들에 따라서 일관적으로 영향을 미치거나 그 중요도가 변화하는 것을 확인하였다.

  • PDF

인공지능 기반 청각장애인 재난안전 픽토그램 긴급알림 생성 기술 개발 (Development of Al Based Disaster Safety Pictogram Emergency Alert Generation Technology for Hearing Impaired)

  • 김용욱;김현철;조범준
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2022년 정기학술대회 논문집
    • /
    • pp.357-358
    • /
    • 2022
  • 지진, 호우, 태풍, 화재 등 긴급한 재난 알림 전달이 필요한 상황에서 청각장애인은 소리를 통한 알림을 인지할 수 없으며 문자를 통한 알림의 인지율도 비장애인에 비하여 상대적으로 낮은 편으로서 일반적인 수단의 재난알림을 신속하게 인지하기 어려운 경우가 많다. 이와 같은 청각장애인의 재난안전 긴급알림 인지의 취약성 문제를 해결하고자 픽토그램을 통한 재난안전 긴급 알림 시스템이 개발되었다. 본 연구에서는 재난문자 통보문의 문구를 기반으로 인공지능을 통하여 청각장애인이 인지하기 보다 용이한 일련의 픽토그램으로 자동으로 변환하는 기술을 개발하고자 하였다. 이를 위해 재난안전 관련 긴급 통보문과 관련되는 픽토그램 기반의 콘텐츠를 수집하고 문자 기반의 그림 출력에 적합한 인공신경망 구조와 훈련방법을 구성하여 인공신경망 기반으로 재난문자에 대응되는 픽토그램 기반의 청각장애인 재난안전 긴급알림이 생성될 수 있도록 하였다.

  • PDF

인지 모델링기반 인공지능 교육 프로그램을 적용한 초등학생의 인공지능 이미지 변화 분석 (Analysis of changes in artificial intelligence image of elementary school students applying cognitive modeling-based artificial intelligence education program)

  • 김태령;한선관
    • 정보교육학회논문지
    • /
    • 제24권6호
    • /
    • pp.573-584
    • /
    • 2020
  • 본 연구는 초등학생들의 인공지능에 대한 이미지를 긍정적으로 향상시키고자 하는 인지 모델링기반 인공지능 알고리즘 교육 프로그램의 개발에 관한 것이다. 먼저 인공지능 알고리즘 중 협력필터링의 개념을 분석하고 이를 인지모델링 방법을 활용하여 교육 프로그램을 개발하였다. 이후 전문가 타당도 검사를 통해 인지 모델링기반의 콘텐츠 개발 방법과 개발된 프로그램에 대한 적절성이 CVR .80 이상으로 타당함을 확인하였다. 개발 프로그램은 초등학교 6학년 학생들에게 수업으로 적용하였고 형용사 단어 23쌍을 이용한 의미분별법을 이용하여 사전-사후에 인공지능에 대한 학생들의 이미지 인식의 변화를 살펴보았다. 학생들의 인공지능에 대한 이미지는 총 23개 단어 쌍 중 12개에서 유의미한 긍정적 변화를 확인할 수 있었다.

메타버스 내 원격 부동산 중계 시스템을 위한 부동산 매물 영상 내 민감정보 삭제 기술 (Privacy-preserving Proptech using Domain Adaptation in Metaverse)

  • 김준호;김진홍;강병준;최재원;김지훈;강동우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.187-190
    • /
    • 2022
  • 본 논문은 메타버스 등 인공지능 연계 증강/가상현실 부동 중계 플랫폼에서 부동산 영상 기반 매물 소개 시스템 구축에서 사생활 및 개인정보가 영상에 담기게 될 수 있는 위험이 존재하기에 부동산 영상 내의 개인정보 및 민감 정보를 인공지능 기술을 기반으로 검출하여 삭제해주고 복원해주는 인공지능 기술 연구개발을 목표로 하였다. 한국형 부동산 내 민감 object 를 정의하고, 최신 인공지능 딥러닝 기술 기반 민감 object detection 알고리즘을 연구 개발하며, 영상에서 삭제된 부분은 인공지능 기술을 기반으로 물체가 없는 실제 공간영상으로 복원해주는 영상복원 기술도 연구 개발하였다. 한국형 부동산 환경 (영상 촬영 조도, 디스플레이 스타일, 주변 가구 배치 등)에 맞는 인공지능 모델 구축을 위하여, 자체적으로 한국 영상 database 구축 및 Transfer learning for target domain adaptation 을 진행하였다. 제안된 알고리즘은 일반적인 환경에서 98%의 정확도와 challenge 환경에서 (occlusion 빛 반사, 저조도 등) 81%의 정확도를 보였다. 본 기술은 Proptech 분야에서 주목받고 있는 메타버스 기반 온라인 중계 서비스 기술을 활성화하기 위하여 기획되었으며, 특히 메타버스 부동산 중계 플랫폼의 활성화를 위하여 사생활 보호 측면에서 필요한 중요 기술을 인공지능 기술을 활용하여 연구 개발하였다.

  • PDF

플립 러닝과 메이커 교육 기반 인공지능 융합교양교과목 설계 방향 탐색 : 학습자 요구 분석을 중심으로 (Exploring the Design of Artificial Intelligence Convergence Liberal Arts Curriculum Based on Flipped Learning and Maker Education: Focusing on Learner Needs Assessment)

  • 김성애
    • 실천공학교육논문지
    • /
    • 제13권2호
    • /
    • pp.221-232
    • /
    • 2021
  • 본 연구는 코로나 19로 인하여 발생한 비대면 수업 환경에서 학습자들의 요구 분석을 토대로 플립 러닝과 메이커 교육 기반 인공지능 융합 교양 교과목의 설계 방향을 탐색하는데 그 목적이 있다. 이를 위해 메이커 교육 기반 인공지능융합 교양 교과목을 수강한 학생들과 수강하지 않은 학생들을 대상으로 플립 러닝에 대한 학생들의 인식과 함께 학습자의 교육 요구도를 조사하였다. 이를 바탕으로 Borich 교육 요구도와 The Locus for Focus Model 모델을 활용하여 교과목 내용 요소에 대한 우선 순위를 분석함으로써 교과목 설계를 위한 기초 자료로 활용하였다. 연구 결과는 다음과 같다. 첫째, 메이커 교육 기반의 인공지능 교양 교과목 내용 요소는 총 9개 영역으로 구성되었으며 플립 러닝을 활용하는 수업으로 설계되었다. 둘째, 교육 요구가 가장 높은 영역은 '인공지능 이론', '인공지능 프로그래밍 실습', '피지컬 컴퓨팅 이론', '피지컬 컴퓨팅 실습'이, 차 순위는 '융합프로젝트', '3D 프린팅 이론', '3D 프린팅 실습'으로 결정되었다. 셋째, 플립 러닝을 활용하여 메이커 교육 기반 인공지능융합 교양 교과목을 운영하는 것은 수강 경험의 유무와 상관없이 대부분 긍정적인 응답이었으며 수강 경험이 있는 학생들의 경우에는 만족도가 매우 높았다. 이를 바탕으로 플립러닝과 메이커교육을 활용한 인공지능 기반의 융합 교양 교과목이 설계되었다. 이는 학생들의 요구를 반영하여 교양 교육에서 인공지능 융합 교육의 기초를 마련하고 대학생의 인공지능 소양 함양의 기회를 제공한다는데 의의가 있다.

인공지능과 핀테크 보안

  • 최대선
    • 정보보호학회지
    • /
    • 제26권2호
    • /
    • pp.35-38
    • /
    • 2016
  • 본 논문에서는 핀테크 보안에 활용 가능한 딥러닝 기술을 살펴본다. 먼저 인공지능과 관련된 보안 이슈를 인공지능이 사람을 위협하는 상황에 대한 보안(Security FROM AI), 인공지능 시스템이나 서비스를 악의적인 공격으로부터 보호하는 이슈(Security OF AI), 인공지능 기술을 활용해 보안 문제를 해결하는 것(Security BY AI) 3가지로 구분하여 살펴본다. Security BY AI의 일환으로 딥러닝에 기반한 비정상탐지(anomaly detection)과 회귀분석(regression)기법을 설명하고, 이상거래탐지, 바이오인증, 피싱, 파밍 탐지, 본인확인, 명의도용탐지, 거래 상대방 신뢰도 분석 등 핀테크 보안 문제에 활용할 수 있는 방안을 살펴본다.

인공지능 기반 효율적인 자동 발주 솔루션 설계 (Design of Solution for An Efficient Automatic Order Based on Artificial Intelligence)

  • 김창환;금민경;오암석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.559-560
    • /
    • 2021
  • 본 논문에서는 인공지능, 사물인터넷 등 4차 산업혁명 기술을 기반으로 생산 업체와 공급 업체 간의 공급망의 가시성, 안전성, 효율성 향상을 위한 물류 표준을 준수하며 고도화 및 지능화된 스마트 SCM 솔루션을 제시하고자 한다. 이를 위해 사물 인터넷, 인공지능 기술을 기반으로 공급망의 가시성, 안전성, 효율성 향상을 위한 물류 표준을 준수하며 고도화되고 지능화된 효율적인 자동 발주 솔루션을 제시한다. 자동 발수 솔루션은 협력업체와의 생산계획정보, 발주정보, 납품정보, 품질판정정보, 재고현황 등의 제품 데이터를 실시간 공유하는 웹 기반 솔루션이다.

  • PDF

인공지능(AI) 역량 함양을 위한 고등학교 수학 내용 구성에 관한 소고 (A Study on Development of School Mathematics Contents for Artificial Intelligence (AI) Capability)

  • 고호경
    • 한국학교수학회논문집
    • /
    • 제23권2호
    • /
    • pp.223-237
    • /
    • 2020
  • 4차 산업혁명 시대를 대표하는 인공지능 기술은 이제 우리 삶에 깊숙이 관여되고 있고 미래 교육은 이러한 인공지능의 원리와 활용에 대한 학생들의 역량 함양을 중시하고 있다. 따라서 본 연구의 목적은 인공지능 역량과 가장 밀접한 교과인 수학에서 다루어야 하는 인공지능 관련 교육 내용을 고찰하는데 있다. 이를 위해 인공지능의 핵심 기술인 기계학습(machine learning)의 원리를 수학기반으로 학습할 수 있는 인공지능 교과를 수학과의 과목으로 신설할 것과, '인공지능과 데이터 과학을 위한 수학' 교과에서 다루어야 하는 주요 수학 내용들을 제안하였다.

가상 휴먼 학습 기반 영상 객체 검출 기법 (Object Detection Based on Virtual Humans Learning)

  • 이종민;조동식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.376-378
    • /
    • 2022
  • 최근, 인공지능 기술을 인공지능 스피커, 인공지능 챗봇, 자율주행 자동차 등 다양한 분야에서 널리 활용하고 있다. 이러한 인공지능 활용 분야 중 영상처리 분야에서는 인공지능을 활용하여 객체를 검출하거나 사물을 인식하는 등 다양한 활용성을 보이고 있다. 예를 들면, CCTV 영상 속 범죄자의 모습을 분석하거나 드론으로 촬영한 영상 속에서 자동차의 개수를 파악하는 등 영상처리 분야에서 인공지능을 활용하는 사례는 점차 늘어가고 있다. 또한, 이러한 영상처리 분야에서 촬영된 이미지를 가지고 카메라의 위치를 파악하고자 하는 시도가 늘고 있다. 이미지 속의 특정한 객체를 기반으로 카메라의 촬영 위치를 분석하려는 것이다. 이를 활용하면 특정 공간 속 사람을 사각지역 없이 촬영할 수 있는 최적의 카메라 개수를 구하거나 CCTV를 설치하기 위한 최적의 위치를 구하는 등 다양한 현실 문제를 해결할 수 있을 것으로 예상이 된다. 본 논문에서는 특정 공간에서 촬영된 이미지를 분석하기 위한 방법으로 가상 휴먼이 합성된 데이터를 활용하는 것을 제시한다. 이를 위해 실제 공간과 가상 휴먼을 합성하여 실제 공간에 사람이 있는 것과 같은 이미지를 획득하도록 하였다. 본 논문에 따르면 공간 분석을 위해 실제 이미지 데이터를 얻는 시간과 비용을 절약할 수 있을 것이며 인공지능 학습을 위한 실제 이미지 데이터를 획득하기 어려운 상황에 대한 해결책을 제시할 수 있다.

  • PDF

An Analysis of Artificial Intelligence Education Research Trends Based on Topic Modeling

  • You-Jung Ko
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.197-209
    • /
    • 2024
  • 본 연구의 목적은 국내 인공지능 교육의 최근 연구 동향을 분석하여 향후 인공지능 교육의 방향성을 모색하는 것이다. 2016년부터 2023년 11월까지 RISS(Research Information Sharing Service)에 게재된 논문 중 인공지능 교육 관련 논문 697편을 대상으로 워드 클라우드(Word Cloud)와 LDA 토픽 모델링(Latent Dirichlet Allocation Topic Modeling) 기법을 활용하여 분석하였다. 분석결과, 주요 토픽으로는 생성형 인공지능 활용 교육, 인공지능 윤리 교육, 인공지능 융합 교육, 인공지능 활용에 대한 교사 인식과 역할, 대학 교육에서 인공지능 리터러시(Literacy) 개발, 인공지능 기반 교육과 연구 방향으로 여섯 가지가 도출되었다. 분석결과를 토대로, (1) 다양한 교과목에 생성형 인공지능 활용 확대, (2) 인공지능 사용을 위한 윤리적 지침, (3) 인공지능 교육의 장기적 영향 평가, (4) 고등교육에서 교사의 인공지능 활용 역량, (5) 대학의 인공지능 교육과정 다양화, (6) 인공지능 연구 추이 분석 및 교육 플랫폼(Platform) 개발 등을 제안하였다.