• Title/Summary/Keyword: 인공위성 자세제어

Search Result 119, Processing Time 0.024 seconds

Development of 100Nm-class Control Moment Gyroscopes for Industrial Applications (100Nm급 산업용 제어모멘트자이로 개발)

  • Lee, Seon-Ho;Kim, Dae-Kwan;Kim, Yong-Bok;Yong, Ki-Lyuk;Choi, Dong-Soo;Park, Do-Hwan;Kim, Il-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2015
  • The control moment gyroscope(CMG) which is well known as an effective high-torque-generating device is applicable to space vehicles, airplanes, ships, automobiles, robotics, etc. for attitude stabilization and maneuver. This paper deals with the overall details of 100Nm-class CMG development for various industrial applications, and provides the activities and results associated with the CMG system-level requirement analysis, the motor subsystem design/manufacturing/integration, the construction of ground support equipment, and the performance test and evaluation. The performance test reveals that the CMG generates the torque output more than 120Nm in as-designed operation of spin motor and gimbal motor.

Development of RTEMS SMP Platform Based on XtratuM Virtualization Environment for Satellite Flight Software (위성비행소프트웨어를 위한 XtratuM 가상화 기반의 RTEMS SMP 플랫폼)

  • Kim, Sun-wook;Choi, Jong-Wook;Jeong, Jae-Yeop;Yoo, Bum-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.467-478
    • /
    • 2020
  • Hypervisor virtualize hardware resources to utilize them more effectively. At the same time, hypervisor's characteristics of time and space partitioning improves reliability of flight software by reducing a complexity of the flight software. Korea Aerospace Research Institute chooses one of hypervisors for space, XtratuM, and examine its applicability to the flight software. XtratuM has strong points in performance improvement with high reliability. However, it does not support SMP. Therefore, it has limitation in using it with high performance applications including satellite altitude orbit control systems. This paper proposes RTEMS XM-SMP to support SMP with RTEMS, one of real time operating systems for space. Several components are added as hypercalls, and initialization processes are modified to use several processors with inter processors communication routines. In addition, all components related to processors are updated including context switch and interrupts. The effectiveness of the developed RTEMS XM-SMP is demonstrated with a GR740 board by executing SMP benchmark functions. Performance improvements are reviewed to check the effectiveness of SMP operations.

Space Radiation Effect on Si Solar Cells (우주 방사능에 의한 실리콘 태양 전지의 특성 변화)

  • Lee, Jae-Jin;Kwak, Young-Sil;Hwang, Jung-A;Bong, Su-Chang;Cho, Kyung-Seok;Jeong, Seong-In;Kim, Kyung-Hee;Choi, Han-Woo;Han, Young-Hwan;Choi, Yong-Woon;Seong, Baek-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.435-444
    • /
    • 2008
  • High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-l) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-l orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-l solar cell degradation was caused by energetic protons which energy is about 700keV to 1.5MeV. Our result can be applied to estimate solar cell conditions of other satellites.

Development of Active Micro-Vibration Isolator using Electromagnet (전자석을 사용한 능동 미소진동 절연장치 개발)

  • Lee, Dae-Oen;Park, Gee-Yong;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.390-394
    • /
    • 2013
  • Observation satellites carrying high precision optical payload require extremely stringent pointing stability that may be violated in the presence of the disturbances corning from reaction wheels, cryocoolers or other actuating components onboard the satellite. The most common method to protect the sensitive payloads from external disturbances is implementation of vibration isolator. In this paper development of a single axis active vibration isolator using electromagnet and its performance in isolating micro-vibration is presented. The main components of the developed isolator are membrane structure providing the isolator with the required stiffness and an electromagnet for active control. The performance test results show that additional damping can be achieved by active control without degrading isolation performance in high frequency region and that the developed isolator can effectively isolate micro-vibration.

  • PDF

Pose Estimation of Ground Test Bed using Ceiling Landmark and Optical Flow Based on Single Camera/IMU Fusion (천정부착 랜드마크와 광류를 이용한 단일 카메라/관성 센서 융합 기반의 인공위성 지상시험장치의 위치 및 자세 추정)

  • Shin, Ok-Shik;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, the pose estimation method for the satellite GTB (Ground Test Bed) using vision/MEMS IMU (Inertial Measurement Unit) integrated system is presented. The GTB for verifying a satellite system on the ground is similar to the mobile robot having thrusters and a reaction wheel as actuators and floating on the floor by compressed air. The EKF (Extended Kalman Filter) is also used for fusion of MEMS IMU and vision system that consists of a single camera and infrared LEDs that is ceiling landmarks. The fusion filter generally utilizes the position of feature points from the image as measurement. However, this method can cause position error due to the bias of MEMS IMU when the camera image is not obtained if the bias is not properly estimated through the filter. Therefore, it is proposed that the fusion method which uses the position of feature points and the velocity of the camera determined from optical flow of feature points. It is verified by experiments that the performance of the proposed method is robust to the bias of IMU compared to the method that uses only the position of feature points.

Characteristics of KOMPSAT-3A Key Image Quality Parameters During Normal Operation Phase (정상운영기간동안의 KOMPSAT-3A호 주요 영상 품질 인자별 특성)

  • Seo, DooChun;Kim, Hyun-Ho;Jung, JaeHun;Lee, DongHan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1493-1507
    • /
    • 2020
  • The LEOP Cal/Val (Launch and Early Operation Phase Calibration/Validation) was carried out during 6 months after KOMPSAT-3A (KOMPSAT-3A Korea Multi-Purpose Satellite-3A) was launched in March 2015. After LEOP Cal/Val was successfully completed, high resolution KOMPSAT-3A has been successfully distributing to users over the past 8 years. The sub-meter high-resolution satellite image data obtained from KOMPSAT-3A is used as basic data for qualitative and quantitative information extraction in various fields such as mapping, GIS (Geographic Information System), and national land management, etc. The KARI (Korea Aerospace Research Institute) periodically checks and manages the quality of KOMPSAT-3A's product and the characteristics of satellite hardware to ensure the accuracy and reliability of information extracted from satellite data of KOMPSAT-3A. To minimize the deterioration of image quality due to aging of satellite hardware, payload and attitude sensors of KOMPSAT-3A, continuous improvement of image quality has been carried out. In this paper, the Cal/Val work-flow defined in the KOMPSAT-3A development phase was illustrated for the period of before and after the launch. The MTF, SNR, and location accuracy are the key parameters to estimate image quality and the methods of the measurements of each parameter are also described in this work. On the basis of defined quality parameters, the performance was evaluated and measured during the period of after LEOP Cal/Val. The current status and characteristics of MTF, SNR, and location accuracy of KOMPSAT-3A from 2016 to May 2020 were described as well.

The Limit of the Continuum Assumption Based on Compressible Flow Structures in an Axisymmetric Micro-Thruster Used for a Satellite (인공위성용 축대칭 소형 추력기의 압축성 유동 구조 계산에 의한 연속체 가정의 적용 한계)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Lee, Kee-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.281-285
    • /
    • 2007
  • The flow characteristics in the thruster should be analyzed considering its geometry and the pressure ratio to estimate its performance and etc. This paper suggests the computational result of an axisymmetric real nozzle for the altitude control of a satellite to find out the application limit that the assumption of continuum mechanics holds. The steady non-reacted compressible flow field in the unstructured grid system is computed and analyzed with varying the environmental pressure (or the degree of vacuum) under the fixed pressure ratio in a real thruster of which the area ratio of exit to throat is 56. The assumption of the continuum mechanics is not approved when the environmental pressure is reduced less than $10^{-3}$ atm.

  • PDF

Hot Firing Performance Measurement of Monopropellant Decomposition Catalyst and Domestic Development Status (단일추진제용 이리듐촉매의 연소성능 측정 및 국내개발 현황)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Kim, Su-Kyum;Jang, Ki-Won;Cho, Sung-June
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.109-117
    • /
    • 2006
  • Hot firing performance test of hydrazine decomposition catalyst used for monopropellant thruster of satellite and launch vehicle was performed on the ground. A test equipment for hot firing performance measurement of catalyst test was developed in collaboration with Hanwha Corp., and the catalyst firing performance were tested with the equipment. After a reaction delay time, a catalyst activity and a granule stability were measured for 2 times, satisfactory results were obtained such as 25msec, 2%, $704^{\circ}C$ for each test items on the average. In addition, the current development status of domestic prototype catalyst and its decomposition performance test results are presented.

Performance Evaluation of Hydrogen Peroxide with Storage Conditions (온도 조건에 따른 과산화수소의 저장성평가)

  • Chung, Seung-Mi;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.105-108
    • /
    • 2008
  • Nowadays, as there is so much interest in environment, hydrogen peroxide attracts attention as an eco-propellant. Hydrogen peroxide is widely used for mono-propellant of thruster, and oxidizer of bi-propellant rocket. Especially, it is used as mono-propellant of the thruster for attitude control of satellite and military weapons. So, the need of long time storage of hydrogen peroxide appears and storage test is required. In this paper, necessity of storage test of hydrogen peroxide and some conditions and methods are introduced. In addition, the results of storage tests under some condition are compared and analyzed.

  • PDF