• Title/Summary/Keyword: 인공위성 레이저 추적

Search Result 12, Processing Time 0.017 seconds

A study on tracking method and normal point formation algorithm of new mobile SLR system in Korea (이동형 SLR의 실시간 추적 및 산출물 생성 알고리즘 연구)

  • Seo, Yoon-Kyung;Rew, Dong-Young;Lim, Hyung-Chul;Kirchner, Georg;Park, Jong-Uk;Youn, Cheong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.370-377
    • /
    • 2011
  • Korea Astronomy and Space Science Institute(KASI) has been developing one mobile SLR system since 2008 named as ARGO-M. Control logic in real-time laser ranging and data processing for normal point from the ranging data are key elements in the operation system of ARGO-M. KASI operation system team performed software logic analysis and related operations for SLR observation with help of Graz SLR station in Austria. This paper describes the algorithm required for SLR operation based on the method in Graz station. We figured out the essential logic for SLR operation and the remedy for the observation quality enhancement through this study.

STATUS AND PROGRESS OF ARGO-M SYSTEM DEVELOPMENT (인공위성 레이저추적 시스템(ARGO-M) 개발 현황)

  • Park, Eun-Seo;Yu, S.Y.;Lim, H.C.;Bang, S.C.;Seo, Y.K.;Park, J.H.;Jo, J.H.;Park, J.U.;Nah, J.K.;Jang, J.G.;Jang, B.H.;Kim, K.D.;Kim, B.I.;Park, C.H.;Lee, S.H.;Ham, S.Y.;Son, Y.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.49-59
    • /
    • 2012
  • KASI (Korea Astronomy and Space Science Institute) has developed an SLR (Satellite Laser Ranging) system since 2008. The name of the development program is ARGO (Accurate Ranging system for Geodetic Observation). ARGO has a wide range of applications in the satellite precise orbit determination and space geodesy research using SLR with mm-level accuracy. ARGO-M (Mobile, bistatic 10 cm transmitting/40 cm receiving telescopes) and ARGO-F (Fixed stationary, about 1 m transmitting/receiving integrated telescope) SLR systems development will be completed by 2014. In 2011, ARGO-M system integration was completed. At present ARGO-M is in the course of system calibration, functionality, and performance tests. It consists of six subsystems, OPS (Optics System), TMS (Tracking Mount System), OES (Opto-Electronic System), CDS (Container-Dome System), LAS (Laser System) and AOS (ARGO Operation System). In this paper, ARGO-M system structure and integration status are introduced and described.