• Title/Summary/Keyword: 인공위성 레이저추적

Search Result 10, Processing Time 0.029 seconds

기획특집(1) 우주 광학 산업의 기술 동향 - 인공위성 레이저추적(SLR) 시스템

  • Im, Hyeong-Cheol
    • The Optical Journal
    • /
    • s.142
    • /
    • pp.17-22
    • /
    • 2012
  • 인공위성 레이저 추적(SLR, Satellite Laser Ranging) 시스템은 레이저를 이용하여 위성까지 거리를 측정하는 가장 정밀한 인공위성 추적 시스템이다. SLR 시스템의 원리는 극초단파의 레이저 빔을 광학 망원경을 통해 발사하여 인공위성에 장착된 레이저 반사경에 의해 반사되어 되돌아오는 레이저 빔의 왕복 비행 시간을 측정함으로써 거리를 구한다. 1964년 발사된 Beacon Explorer-B 위성의 궤도결정을 위해 SLR 기술이 NASA에 의해 처음 사용되었는데, 당시에는 거리측정 오차가 50m 수준이었다. 현재는 전자, 광학 및 제어 기술의 발달에 힘입어 그 오차가 mm 수준으로 크게 향상되어 인공위성 운영, 지구물리, 우주측지 및 우주감시 등 다양한 분야에 활용되고 있다. 미국을 비롯한 우주 선진국은 이미 다수의 SLR 시스템을 구축하여 운영하고 있으며, 현재 전 세계적으로 약 40여 개의 SLR 관측소가 국제레이저추적기구(ILRS, International Laser Ranging Service)에 가입하여 활동하고 있다. 또한 인공위성의 정밀한 거리측정을 위해 레이저 반사경이 장착된 위성 50여 개가 운영중에 있다. 고정밀 지구관측 위성 대부분에 레이저 반사경이 장착돼 있으며 러시아의 GLONASS 항법체계를 구성하는 모든 항법위성에도 레이저 반사경이 장착돼 있다. 또한 유럽우주기구에서 추진하는 갈릴레오 및 중국의 Compass 항법위성도 레이저 반사경이 장착될 예정이다. 최근에는 행성탐사 및 달탐사 우주선에 SLR 시스템의 활용 범위가 확대됨에 따라 SLR 시스템의 국제적 수요가 꾸준히 증가하고 있다. 우리나라의 나로과학위성 및 다목적실용위성 5호에도 레이저 반사경이 장착돼 발사되기 때문에 국내 독자적 레이저추적을 위해서 SLR 시스템 구축이 꾸준히 요구되어 왔다. 한국천문연구원은 2008년부터 SLR 시스템 개발을 추진했다. 2012년 9월에 40cm 크기의 망원경을 지닌 이동형 SLR 시스템 개발을 완료했으며 오는 2015년에는 1m급 고정형 SLR 시스템 개발을 완료할 예정이다.

  • PDF

Preliminary Perfomances Anlaysis of 1.5-m Scale Multi-Purpose Laser Ranging System (1.5m급 다목적형 레이저 추적 시스템 예비 성능 분석)

  • Son, Seok-Hyeon;Lim, Jae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.771-780
    • /
    • 2021
  • The space Debris laser ranging system is called to be a definite type of satellite laser ranging system that measures the distance to satellites. It is a system that performs POD (Precise Orbit Determination) by measuring time of flight by firing a laser. Distance precision can be measured in mm-level units, and it is the most precise system among existing systems. Currently, KASI has built SLR in Sejong and Geochang, and utilized SLR data to verify the precise orbits of the STSAT-2C and KOMASAT-5. In recent years, due to the fall or collision of space debris, its satellites have been threatened, and in terms of security, laser tracking of space objects is receiving great interest in order to protect their own space assets and protect the safety of the people. In this paper, a 1.5m-class main mirror was applied for the system design of a multipurpose laser tracking system that considers satellite laser ranging and space object laser tracking. System preliminary performance analysis was performed based on Link Budget analysis considering specifications of major components.

Development and Preliminary Performance Analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging (1m급 인공위성 레이저추적 시스템용 고속·고정밀 추적마운트 개발 및 예비 성능분석)

  • Choi, Man-Soo;Lim, Hyung-Chul;Lee, Sang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.1006-1015
    • /
    • 2016
  • This paper presents preliminary design and performance analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging(SLR) which is development by Korea Astronomy and Space science Institute(KASI). SLR is considered to be the most accurate technique currently available for the precise orbit determination of Earth satellites. The SLR technique measures the time of flight between pulses emitted from laser transmitter and pulses returned from satellites with laser retro-reflector array. It provides millimeter level precision of range measurements between SLR stations and satellites. A fast and high precision Tracking Mount for SLR which is proposed in this research should be capable of day and nighttime laser tracking about the satellites with laser reflectors from 200 km to 36,000 km altitude(geosynchronous orbit). In order to meet this requirement, we performed mechanical design and structural analysis for Tracking Mount. Also we designed the motion control system and conducted pre-performance analysis to obtain good performance results for a fast and high precision Tracking Mount.

이동형 인공위성레이저추적용 광학계 개발

  • Na, Ja-Gyeong;Kim, Gwang-Dong;Jang, Jeong-Gyun;Jang, Bi-Ho;Han, In-U;Han, Jeong-Yeol;Park, Gwi-Jong;Park, Chan;Nam, Uk-Won;Im, Hyeong-Cheol;Park, Eun-Seo;Yu, Seong-Yeol;Seo, Yun-Gyeong;Mun, Il-Gwon;Gang, Yong-U
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.164.2-164.2
    • /
    • 2012
  • 인공위성레이저추적(SLR, Satellite Laser Ranging) 시스템은 인공위성까지 레이저를 발사하여 되돌아오는 시간간격을 측정함으로서 위성까지의 거리를 측정하는 시스템으로 현존하는 인공위성 궤도결정 시스템으로는 가장 정밀하다. 한국천문연구원은 우주추적 및 감시의 필요성이 증가함에 따라 2008년부터 40cm급 이동형 인공위성레이저추적 시스템을 개발을 시작하였고, 현재 개발을 완료하여 시험운영 중에 있다. 시스템 개발 과정 중에 발생할 수 있는 문제점들을 최소화하기 위해, 설계 단계에서 부품을 포함한 광기계 구조물에 대한 구조해석과, 실험실 프로토타입 구성 등을 실시하였다. 제작된 각 서브시스템별 조립 및 평가는 한국천문연구원이 보유한 광학계 조립 및 평가 시설을 이용하였다. 개발된 이동형 레이저 추적 시스템의 광학부는 추적마운트에 장착되었고, 현장 시험관측을 통해 수신광학계 및 광신호유도계의 정렬 및 제어항목 교정 등을 실시하였으며, 성공적으로 시험 영상 관측을 완료하였다. 이 발표에서는 이동형 레이저 추적 시스템 광학계의 개발 과정과 그 결과에 대해 보고한다.

  • PDF

Laser Tracking Analysis of Space Debris using SOLT System at Mt. Gamak (감악산 SOLT 시스템을 이용한 우주잔해물 레이저추적 성능분석)

  • Lim, Hyung-Chul;Park, Jong-Uk;Kim, Dong-Jin;Seong, Kipyung;Ka, Neung-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.830-837
    • /
    • 2015
  • Space debris has been a major issue recently for the space-active nations because its growing population is expected to increase the collision risk with operational satellites. Radar and electro-optical system has been used for space debris surveillance, which may cause unnecessary anti-collision manoeuvers due to their low tracking accuracy. So an additional tracking system is required to improve the predicted orbit accuracy and then to jude the anti-collision maneouvers more efficiently. The laser tracking system has been considered as an alternative to decrease these unnecessary manoeuvers. Korea Astronomy and Space Science Institute has been developing a space object laser tracking system which is capable of laser tracking for satellites with retro-reflectors and for space debris using high power laser, and satellite imaging using adaptive optics. In this study, the tracking capability is analyzed for space debris using high power laser based on link budget, false alarm probability and signal detection probability.

Development of Operation Software for High Repetition rate Satellite Laser Ranging (고반복율 인공위성 레이저추적을 위한 운영 소프트웨어 개발)

  • Sung, Ki-Pyoung;Choi, Eun-Jung;Lim, Hyung-Chul;Jung, Chan-Gyu;Kim, In-Yeong;Choi, Jae-Seung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1103-1111
    • /
    • 2016
  • Korea Astronomy and Space Science Institute (KASI) has been operating SLR (Satellite Laser Ranging) system with 2kHz repetition rate for satellite precise orbit and spin determination as well as space geodesy. But the SLR system was improved to be capable of laser ranging with high repetition rate, up to 10kHz by developing new operation software and novel range gate generator, called HSLR-10. The HSLR-10 will contribute to the accurate spin rate determination of geodetic satellites and geodetic research due to its largest repetition rate in the world. In this study, the development methodology and configuration of operation software are addressed, and its validation results are also presented.

Space Debris Tracking Coverage Analysis of Spinning Disk for Optical Path Switch of Geochang Laser Tracking System (거창 레이저 추적 시스템의 광 경로 전환을 위한 회전 디스크의 우주쓰레기 레이저 추적 성능 분석)

  • Sung, Ki-Pyoung;Lim, Hyung-Chul;Yu, Sung-Yeol;Choi, Man-Soo;Ryou, Jae-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.391-399
    • /
    • 2020
  • KASI (Korea Astronomy and Space Science Institute) has been developing the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for scientific research and national space missions. The space debris laser tracking system provides the distance to space debris without a laser retro-reflector array by using a high power pulse laser, which employs a spinning disk to change the optical path between the transmit and receive beams. The spinning disk causes the collision band which is unable to reflect the returned signal to a detector and then has an effect on the tracking coverage of space debris. This study proposed the mathematical model for tracking coverage by taking into account the various specifications of spinning disk such as disk size, spinning velocity and collision rate between the disk and hole. In addition, the spinning disk specifications were analyzed in terms of tracking coverage and collision band based on the mathematical model to investigate tracking requirements of the Geochang laser tracking system.

Pointing Accuracy Analysis of Space Object Laser Tracking System at Geochang Observatory (거창 우주물체 레이저 추적 시스템의 추적마운트 지향 정밀도 분석)

  • Sung, Ki-Pyoung;Lim, Hyung-Chul;Park, Jong-Uk;Choi, Man-Soo;Yu, Sung-Yeol;Park, Eun-Seo;Ryou, Jae-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.953-960
    • /
    • 2021
  • Korea Astronomy and Space Science Institute has been verifying the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for not only scientific research but also national space missions. The system employs an optical telescope consisting of a 100 cm primary mirror and an altazimuth mount for fast and precise tracking. The precise pointing and tracking capability in a tracking mount is considered as one of important performance metrics in the fields of automatic tracking and precise application research. So it is required to analyze a mount model for investigating pointing error factors and compensating pointing error. In this study, we investigated various factors causing static pointing errors of tracking mount and analyzed the pointing accuracy of the tracking mount at Geochang observatory by estimating mount parameters based on the least square method.

A study on tracking method and normal point formation algorithm of new mobile SLR system in Korea (이동형 SLR의 실시간 추적 및 산출물 생성 알고리즘 연구)

  • Seo, Yoon-Kyung;Rew, Dong-Young;Lim, Hyung-Chul;Kirchner, Georg;Park, Jong-Uk;Youn, Cheong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.370-377
    • /
    • 2011
  • Korea Astronomy and Space Science Institute(KASI) has been developing one mobile SLR system since 2008 named as ARGO-M. Control logic in real-time laser ranging and data processing for normal point from the ranging data are key elements in the operation system of ARGO-M. KASI operation system team performed software logic analysis and related operations for SLR observation with help of Graz SLR station in Austria. This paper describes the algorithm required for SLR operation based on the method in Graz station. We figured out the essential logic for SLR operation and the remedy for the observation quality enhancement through this study.

STATUS AND PROGRESS OF ARGO-M SYSTEM DEVELOPMENT (인공위성 레이저추적 시스템(ARGO-M) 개발 현황)

  • Park, Eun-Seo;Yu, S.Y.;Lim, H.C.;Bang, S.C.;Seo, Y.K.;Park, J.H.;Jo, J.H.;Park, J.U.;Nah, J.K.;Jang, J.G.;Jang, B.H.;Kim, K.D.;Kim, B.I.;Park, C.H.;Lee, S.H.;Ham, S.Y.;Son, Y.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.49-59
    • /
    • 2012
  • KASI (Korea Astronomy and Space Science Institute) has developed an SLR (Satellite Laser Ranging) system since 2008. The name of the development program is ARGO (Accurate Ranging system for Geodetic Observation). ARGO has a wide range of applications in the satellite precise orbit determination and space geodesy research using SLR with mm-level accuracy. ARGO-M (Mobile, bistatic 10 cm transmitting/40 cm receiving telescopes) and ARGO-F (Fixed stationary, about 1 m transmitting/receiving integrated telescope) SLR systems development will be completed by 2014. In 2011, ARGO-M system integration was completed. At present ARGO-M is in the course of system calibration, functionality, and performance tests. It consists of six subsystems, OPS (Optics System), TMS (Tracking Mount System), OES (Opto-Electronic System), CDS (Container-Dome System), LAS (Laser System) and AOS (ARGO Operation System). In this paper, ARGO-M system structure and integration status are introduced and described.