• Title/Summary/Keyword: 인공위성 관성모멘트

Search Result 5, Processing Time 0.02 seconds

Analysis of COMS In-Orbit Test for Moment of Inertia Measurement (천리안위성 관성모멘트의 궤도상 측정 시험 분석)

  • Park, Keun-Joo;Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • In the attitude and orbit control subsystem design, the moment of inertia of the satellite is the major contributor to be considered. Satellites equipped with large solar arrays need to measure the moment of inertia accurately to avoid the interference of the thruster actuation period with its flexible mode. In this paper, the in-orbit tests of COMS to measure the moment of inertia are described. Then, the differences between the measured through in-orbit test and the predicted are compared. Finally, it is verified that the differences are below uncertainty bounds considered in the critical design of COMS attitude and orbit control subsystem.

Spacecraft Moment of Inertial Estimation by Modified Rodrigues Parameters (Modified Rodrigues Parameter 기반의 인공위성 관성모멘트 추정 연구)

  • Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • This study addresses spacecraft moment of inertial estimation approach using Modified Rodrigues Parameters(MRP). The MRP offer advantage by avoiding singularity in Kalman Filter design for attitude determination caused by the norm constraint of quaternion parameters. Meanwhile, MRP may suffer singularity for large angular displacement, so that we designed appropriate reference attitude motion for accurate estimation. The proposed approach is expected to provide stable error covariance update with accurate spacecraft mass property estimation results.

Radial Type Satellite Attitude Controller Design using LMI Method and Robustness Analysis (LMI 방법을 이용한 방사형 인공위성 제어로직 설계 및 강건성 분석)

  • Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.998-1007
    • /
    • 2015
  • The $H_{\infty}$ control theory using LMI method is applied to design an attitude controller of radial type satellite that has strongly coupled channels due to the large product of inertia. It is observed that the cross-over frequency of open-loop with $H_{\infty}$ controller is lower than that of open-loop without controller, which is not typical phenomenon in an optimal control design result: it is interpreted that due to a large product of inertia, there is certain limit in increasing agility of satellite by just tuning weighting function. ${\mu}$-analysis is performed to verify the stability and performance robustness with the assumption of +/-5% MOI variation. ${\mu}$-analysis result shows that the variation of principal MOI degrades the stability and performance robustness more than the variation of POI does.

Preliminary Performance Analysis of Satellite Formation Flying Testbed by Attitude Tracking Experiment (자세추적 실험을 통한 인공위성 편대비행 테스트베드의 예비 성능분석)

  • Eun, Youngho;Park, Chandeok;Park, Sang-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • This paper presents preliminary performance analysis of a satellite formation flying testbed, which is under development by Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University. A model reference adaptive controller (MRAC) with a first-order reference model is chosen to enhance the response of reaction wheel system which is subject to uncertainties caused by unmodelled dynamics and measurement noise. In addition, an on-line parameter estimation (OPE) technique based on the least square is combined to eliminate the effect of angular measurement noise by estimating the moment of inertia. Both numerical simulations and hardware experiments with MRAC support the effectiveness and applicability of the adaptive control scheme, which maintains the tracking error below $0.25^{\circ}$ for the entire time span. However, the high frequency control input generated in hardware experiment strongly suggests design modifications to reduce the effect of deadzone.

Investigation of Dual-Spin Turn and Attitude Acquisition of Satellite (위성의 Dual-Spin Turn 방법 분석 및 자세획득)

  • Seo, Hyeon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.36-47
    • /
    • 2006
  • The process of dual spin turn maneuver is introduced for attitude acquisition or recovery from flat spin state of a satellite. The physical principle of momentum transfer during dual spin turn is explained clearly. The case studies of special dual spin turn, in addition to the conventional dual spin turn, that are known as an acceptable cases, are performed to investigate the principle of dual spin turn and to provide a physical insight as well as the solution of dual spin turn. This study is done based on case-study simulation, which includes two-state control scheme composed of open-loop maneuver and energy dissipation device. Furthermore, we investigate the stability for the verification of all control cases after implementing two-stage control. We also provide the simulation scenario of flat spin recovery using dual spin turn method as an example.