• 제목/요약/키워드: 인공신경회로망

검색결과 154건 처리시간 0.02초

태양 추적시스템을 위한 PC 기반의 퍼지제어기 설계 (Fuzzy Controller Design of PC Based for Solar Tracking System)

  • 정동화;최정식;고재섭
    • 조명전기설비학회논문지
    • /
    • 제22권5호
    • /
    • pp.86-94
    • /
    • 2008
  • 본 논문은 PV(Photovoltaic) 어레이의 출력을 높이기 위해 PC 기반의 퍼지제어를 이용한 태양추적 시스템을 제안한다. 태양 추적시스템은 광센서의 신호에 의해 구동하는 두 개의 DC 모터로 동작한다. 두 축의 제어는 파라미터의 불확실성 및 비선형 특성 때문에 쉽지 않다. 최근 퍼지제어, 신경회로망 및 유전자 알고리즘 등의 인공지능 제어에 대한 연구가 많이 이루어지고 있다. 그 중 퍼지제어는 비선형 제어를 원활하게 수행할 수 있으며 파라미터 변동 및 비선형 특성에 대한 강인성 및 고성능의 특징을 가지고 있다. 따라서 퍼지제어는 설정된 오차 값과 비선형의 고도각 및 방위각 오차 값을 비교하여 추적 시스템 구동을 위해 사용된다. 본 논문에서는 PV 어레이의 출력 향상을 위해 퍼지제어기를 설계하고 종래의 Pl 제어기와 성능을 비교하며 평가한다. 실험을 통한 데이터는 제시한 제어기의 타당성을 입증한다.

Battery State-of-Charge Estimation Using ANN and ANFIS for Photovoltaic System

  • Cho, Tae-Hyun;Hwang, Hye-Rin;Lee, Jong-Hyun;Lee, In-Soo
    • 한국정보기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.55-64
    • /
    • 2020
  • 태양광 시스템의 안정성과 신뢰성 향상을 위해서는 배터리의 잔존량 (State of Charge, SOC)을 정확하게 추정하여야 한다. 본 연구에서는 gradient descent, Levenberg-Marquardt 및 scaled conjugate gradient 학습방법을 사용한 인공 신경회로망 (Artificial Neural Networks, ANN)과 적응형 뉴로-퍼지 추론 시스템 (Adaptive Neuro-Fuzzy Inference System, ANFIS)을 사용한 SOC 추정방법을 제안한다. 입력으로는 충전 시작 전압 및 적류적산법을 통해 구한 충전 전류를 사용하여 추정된 SOC를 출력한다. 4개의 모델 (ANN-GD, ANN-LM, ANN-SCG, 및 ANFIS)을 사용하여 SOC 추정 방법을 구현하였고 실험을 통해 MATLAB을 사용하여 4개의 모델의 성능을 비교 분석하였다. 실험 결과로부터 ANFIS 모델을 사용한 배터리의 SOC 추정이 가장 정확도가 높았으며 빠른 속도로 수렴함을 확인하였다.

수문자료가 Neuro-Fuzzy 기법 결과에 미치는 영향 분석 (Analysis of Impact of Hydrologic Data on Neuro-Fuzzy Technique Result)

  • 지정원;최창원;이재응
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1413-1424
    • /
    • 2013
  • 최근 우리나라에는 집중호우의 발생 빈도가 잦아지고 있다. 집중호우는 단시간에 발생하여 인명과 재산에 직접적인 피해를 주는 특징이 있다. 이러한 이유로 치수에 대한 관심은 점점 높아지고 있으며 정확한 유량 예측을 바탕으로 홍수에 대비할 수 있는 시스템 개발에 대한 연구가 활발하게 이루어지고 있다. 지금까지 홍수 예보에는 주로 물리적 모형이 사용되어 왔다. 물리적 모형은 매개변수 결정을 위해 많은 자료를 필요로 하고 또 매개변수의 결정 과정에서 많은 불확실성을 포함하고 있기 때문에 계산과정을 거치는 동안 다양한 오차가 반복하여 누적되는 단점이 있다. ANFIS는 인공신경회로망과 퍼지기법을 사용한 자료 지향형 모형으로 기존의 물리적 모형에서 사용한 방대한 양의 물리적 자료를 배제하고 유역의 강우자료와 유량자료만을 사용하여 모형을 구축하고 수위를 예측할 수 있다는 장점이 있다. 그러나 자료 지향형 모형은 입력 자료와 결과 사이의 논리적 상관성을 찾을 수 없다는 단점이 있다. 본 연구에서는 ANFIS 모형에 사용되는 함수의 옵션과 입력자료의 특성의 제한적인 변화에 따른 결과자료 분석을 통해 자료 지향형 모형의 특성을 분석하였다. 또한 일반적으로 많이 사용하는 물리적 모형 중 하나인 HEC-HMS의 유출량 산정 결과와의 비교를 통해 ANFIS의 적용성을 평가하였다. 본 연구는 남한강 상류에 위치한 청미천 유역의 2007년부터 2011년까지의 관측 강우자료와 유량자료를 사용하여 수행하였다.

LIBS를 이용한 흑색 플라스틱의 자동선별 시스템 개발 (Development of Automatic Sorting System for Black Plastics Using Laser Induced Breakdown Spectroscopy (LIBS))

  • 박은규;정밤빛;최우진;오성권
    • 자원리싸이클링
    • /
    • 제26권6호
    • /
    • pp.73-83
    • /
    • 2017
  • 소형가전 제품은 종류가 다양할 뿐만 아니라 구성부품의 재질도 복잡하여 폐기시 재활용이 매우 어려운 실정이다. 특히, 폐소형가전의 경우 흑색 플라스틱의 함유량이 높을 뿐만 아니라 재질이 다양하여 재활용 공정에서 발생하는 플라스틱의 재질을 인식하여 효율적으로 선별 회수하는 것이 매우 어렵다. 본 연구에서는 기존 선별기술이 가지고 있는 흑색 플라스틱의 재질별 선별에 대한 기술적 한계 및 단점을 보완하기 위하여 레이저유도붕괴분광법(Laser-Induced Breakdown Spectroscopy, LIBS)을 기반으로 하는 흑색 플라스틱의 재질별 자동선별 시스템을 개발하였다. 본 시스템은 정량 공급장치, 위치 자동인식 장치, 레이저유도기반분광분석(LIBS) 장치, 선별분리장치 및 Control unit 등으로 구성되어 있다. 레이저유도붕괴분광법(LIBS)을 이용하여 흑색 플라스틱의 재질별 특성 스펙트럼 데이터를 획득하고, 인공지능형 알고리즘을 적용한 분류기를 설계하여 적용함으로써 흑색 플라스틱의 재질을 효율적으로 인식하고 분류할 수 있다. 본 연구에서 개발한 방사형기저함수신경회로망(RBFNNs) 분류기의 분류율은 약 97% 이상으로 나타났으며, 자동선별 시스템의 흑색 플라스틱의 재질별 인식률은 약 94.0% 이상, 선별효율은 80.0% 이상으로 조사되었다. 본 연구에서는 실험실 규모의 자동선별장치를 개발하였으며, 본 장치에 대한 실험결과를 바탕으로 흑색 플라스틱 재질인식 및 선별효율 등을 분석하므로써 향후 폐소형가전의 재활용 현장에 적용할 예정이다.