• Title/Summary/Keyword: 인공신경망 분석

Search Result 797, Processing Time 0.023 seconds

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고유한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미 있는 정보로 변환시켜 줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망과의 모형결합을 통해 기존연구와는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이블릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다.

  • PDF

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자 알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다. 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고요한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미있는 정보로 변환시켜줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망의 모형결합을 통해 기존연구과는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서는 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이브릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다. 기존의 주기분할방법론은 모형개발자입장에서 여러 가지 통계기준치중에서 최적의 기준치를 합리적으로 선택해야 하는 문제가 추가적으로 발생하며, 본 연구에서는 이상의 제반 문제들을 개선시키기 위해 통합방법론으로서 기존의 인공신경망모형을 구조적으로 확장시켰다. 이 모형에서 기존의 입력층 이전단계에 새로운 층이 정의된다. 이렇게 해서 생성된 새로운 통합모형은 기존모형에서 생성되는 기본적인 학습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.

  • PDF

Application of Artificial Neural Networks for Prediction of the Unconfined Compressive Strength (UCS) of Sedimentary Rocks in Daegu (대구지역 퇴적암의 일축압축강도 예측을 위한 인공신경망 적용)

  • Yim Sung-Bin;Kim Gyo-Won;Seo Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2005
  • This paper presents the application of a neural network for prediction of the unconfined compressive strength from physical properties and schmidt hardness number on rock samples. To investigate the suitability of this approach, the results of analysis using a neural network are compared to predictions obtained by statistical relations. The data sets containing 55 rock sample records which are composed of sandstone and shale were assembled in Daegu area. They were used to learn the neural network model with the back-propagation teaming algorithm. The rock characteristics as the teaming input of the neural network are: schmidt hardness number, specific gravity, absorption, porosity, p-wave velocity and S-wave velocity, while the corresponding unconfined compressive strength value functions as the teaming output of the neural network. A data set containing 45 test results was used to train the networks with the back-propagation teaming algorithm. Another data set of 10 test results was used to validate the generalization and prediction capabilities of the neural network.

Non-Linear Deformation Analysis of NATM Tunnel using Artificial Neural Network and Computational Methods (인공신경망과 수치해석을 이용한 NATM터널의 비선형 거동 분석)

  • Lee, Jae-Ho;Kim, Young-Su;Akutagawa, Shinich;Moon, Hong-Duk;Jeon, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.59-70
    • /
    • 2008
  • 도심지 터널의 설계, 시공 그리고 유지관리에 있어서 지반 변위 억제와 변형거동 예측은 중요하다. 국내 외 연구자들은 다양한 수치해석적인 기법과 현장 계측 결과를 이용하여 터널 시공과 관련된 변형거동 예측을 시도하였다. 하지만, 설계물성치의 산정과 지반 모델링 그리고 수치해석기법과 관련된 사용상의 어려움에 의해 아직까지 만족스러운 결과를 얻지는 못하였다. 본 논문은 수치해석적인 기법과 인공신경망을 이용하여 도심지 NATM 터널의 설계 물성치 산정과 변형거동 예측에 관한 방법을 제안하였다. 인공신경망 모델 개발을 위한 학습과 테스트과정은 데이터베이스된 수치해석결과를 이용하였다. 개발된 인공신경망 모델은 입력변수인 지반변위와 결과변수인 설계 물성치 간의 상호관계를 적절히 인식할 수 있다. 수치해석은 지반의 연화거동을 모사할 수 있는 변형률 연화모델을 적용하였다. 사례분석에 있어서 굴착 초기단계의 계측 값을 개발된 인공신경망 모델에 입력하여 설계 물성치를 계산하였으며, 수정된 설계 물성치는 수치해석을 통하여 다음 굴착단계에서의 터널 주변의 지반 변형거동을 예측하였다. 본 논문에서 제안된 방법을 토대로 시공조건이 엄밀한 도심지 터널의 설계물성치의 정량적인 평가 및 변형거동 예측이 계측이 입수된 초기 굴착단계에서 가능할 것으로 기대된다.

  • PDF

Time-Series Prediction of Baltic Dry Index (BDI) Using an Application of Recurrent Neural Networks (Recurrent Neural Networks를 활용한 Baltic Dry Index (BDI) 예측)

  • Han, Min-Soo;Yu, Song-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.50-53
    • /
    • 2017
  • Not only growth of importance to understanding economic trends, but also the prediction to overcome the uncertainty is coming up for long-term maritime recession. This paper discussed about the prediction of BDI with artificial neural networks (ANN). ANN is one of emerging applications that can be the finest solution to the knotty problems that may not easy to achieve by humankind. Proposed a prediction by implementing neural networks that have recurrent architecture which are a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). And for the reason of comparison, trained Multi Layer Perceptron (MLP) from 2009.04.01 to 2017.07.31. Also made a comparison with conventional statistics, prediction tools; ARIMA. As a result, recurrent net, especially RNN outperformed and also could discover the applicability of LSTM to specific time-series (BDI).

  • PDF

A credit prediction model of a capital company′s customers using genetic algorithm based integration of multiple classifiers (유전자 알고리즘기반 복수 분류모형 통합에 의한 할부금융고객의 신용예측모형)

  • 이웅규;김홍철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • 본 연구에서는 할부금융시장에서의 고객신용예측을 위한 모형으로 여러 가지 인공신경망(Neural Network) 모형들을 유전자 알고리즘(Genetic Algorithm)을 이용하여 통합한 신용예측모형을 제안한다. 10개의 학습된 인공신경망 모형들을 유전자알고리즘을 이용하여 종류별로 통합하여 MLP(Multi-Layered Perceptrons), Linear, RBF(Radial Basis Function) 세 가지의 대표모델을 얻고 이를 다시 하나의 인공신경망 모델로 통합하였다. 이를 통합되기 이전의 각각의 인공신경망 모형들과 성능을 비교, 분석하여 본 연구에서 제안한 통합모형의 유효성과 통합방법의 타당성을 제시하였다.

  • PDF

Enhancement of the Correctness of Marker Detection and Marker Recognition based on Artificial Neural Network (인공신경망을 이용한 마커 검출 및 인식의 정확도 개선)

  • Kang, Sun-Kyung;Kim, Young-Un;So, In-Mi;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • In this paper, we present a method for the enhancement of marker detection correctness and marker recognition speed by using artificial neural network. Contours of objects are extracted from the input image. They are approximated to a list of line segments. Quadrangles are found with the geometrical features of the approximated line segments. They are normalized into exact squares by using the warping technique and scale transformation. Feature vectors are extracted from the square image by using principal component analysis. Artincial neural network is used to checks if the square image is a marker image or a non-marker image. After that, the type of marker is recognized by using an artificial neural network. Experimental results show that the proposed method enhances the correctness of the marker detection and recognition.

  • PDF

Analysis of Urban Infrastructure Risk Areas to Flooding using Neural Network in Seoul (인공신경망을 활용한 서울시 도시기반시설 침수위험지역 분석)

  • Kang, Jung Eun;Lee, Moung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.997-1006
    • /
    • 2015
  • This study analyzed urban infrastructure risk to flooding based on the possibility map of flooding calculated by neural network model focusing on Seoul. This study found that Gangnam-gu, Songpa-gu, Seocho-gu and Seodaemun-gu contained relatively large high-risk areas to flooding. Over $4.17km^2$ of transportation facilities were located in high-risk area to flooding and Gangnam-gu included over $0.85km^2$ of infrastructures exposed to high inundation risk. This study is meaningful in that it first applied the neural network modeling to flooding risk assesment and results of risk assessment can be incorporated into various planning process.

A Topic Related Word Extraction Method Using Deep Learning Based News Analysis (딥러닝 기반의 뉴스 분석을 활용한 주제별 최신 연관단어 추출 기법)

  • Kim, Sung-Jin;Kim, Gun-Woo;Lee, Dong-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.873-876
    • /
    • 2017
  • 최근 정보검색의 효율성을 위해 데이터를 분석하여 해당 데이터를 가장 잘 나타내는 연관단어를 추출 및 추천하는 연구가 활발히 이루어지고 있다. 현재 관련 연구들은 출현 빈도수를 사용하는 방법이나 LDA와 같은 기계학습 기법을 활용해 데이터를 분석하여 연관단어를 생성하는 방법을 제안하고 있다. 기계학습 기법은 결과 값을 찾는데 사용되는 특징들을 전문가가 직접 설계해야 하며 좋은 결과를 내는 적절한 특징을 찾을 때까지 많은 시간이 필요하다. 또한, 파라미터들을 직접 설정해야 하므로 많은 시간과 노력을 필요로 한다는 단점을 지닌다. 이러한 기계학습 기법의 단점을 극복하기 위해 인공신경망을 다층구조로 배치하여 데이터를 분석하는 딥러닝이 최근 각광받고 있다. 본 논문에서는 기존 기계학습 기법을 사용하는 연관단어 추출연구의 한계점을 극복하기 위해 딥러닝을 활용한다. 먼저, 인공신경망 기반 단어 벡터 생성기인 Word2Vec를 사용하여 다양한 텍스트 데이터들을 학습하고 룩업 테이블을 생성한다. 그 후, 생성된 룩업 테이블을 바탕으로 인공신경망의 한 종류인 합성곱 신경망을 활용하여 사용자가 입력한 주제어와 관련된 최근 뉴스데이터를 분석한 후, 주제별 최신 연관단어를 추출하는 시스템을 제안한다. 또한 제안한 시스템을 통해 생성된 연관단어의 정확률을 측정하여 성능을 평가하였다.

Analysis of the Ripple Effect of COVID-19 on Art Auction Using Artificial Neural Network (인공신경망 모형을 활용한 미술품 경매에 대한 COVID-19의 파급효과 분석)

  • Lee, Ji In;Song, Jeong Seok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.533-543
    • /
    • 2023
  • This study explores the influence of the COVID-19 pandemic on the Korean art market and contrasts the classic hedonic method of art price prediction with the Artificial Neural Network technique. The empirical analysis of this paper utilizes 14,639 observations of Korean art auction data from 2015 to 2021. There are three types of variables in this study: artist-related, artwork-related, and sales-related. Previous studies have suggested that these three types of variables influence art prices. The empirical findings in this research are in twofold. First, in terms of RMSE and R2, the Artificial Neural Network outperforms the hedonic model. Both techniques discover that sales and artwork variables have a greater impact than artist-related attributes. Second, when the primary factors of art price are controlled, Korean art prices are found to fall dramatically in 2020, shortly following the onset of COVID-19, but to rebound in 2021. The main lesson in this study is that the Artificial Neural Network enhances art price prediction and reduces information asymmetry in the Korean art market even in the face of unanticipated turmoil such as the COVID-19 outbreak.