• Title/Summary/Keyword: 인공신경망 분석

Search Result 797, Processing Time 0.029 seconds

일상어휘를 기반으로 한 선물 가격 예측모형의 계발

  • 김광용;이승용
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.291-300
    • /
    • 1999
  • 본 논문은 인공신경망과 귀납적 학습방법 등의 인공지능 방법과 선물가격결정에 대한 기존 재무이론을 사용하여 일상어취로 표현되는 파생상품 가격예측 모형을 개발하는데 있다. 모형의 개발은 1단계로 인공신경망이나 기존의 선물가격결정이론(평균보 유비용모형이나 일반균형모형)을 이용하여 선물 가격을 예측한 후, 서로 비교 분석하여 인공신경망 모형의 우수성을 확인하였다. 귀납적 학습방법중 CART 알고리듬을 사용하여 If-Then 규칙을 생성하였다. 특히 실용적 측면에서 선물가격의 일상어휘화를 통한 모형개발을 여러 가지 방법으로 시도하였다. 이러한 선물가격 예측모형의 유용성은 일단 If-Then 규칙으로 표현되어 전문가의 판단에 확실한 이론적인 근거를 제시할 수 있는 장점이 있으며, 특히 의사결정지원시스템으로 활용화 될 경우 매우 유용한 근거자료로 활용될 수 있다. 이러한 선물가격 예측모형의 정확성은 분석표본과 검증표본으로 나누어 검증표본에서 세가지 기본모형(평균보유 비용모형, 일반균형모형, 인공신경망 모형)과 각 모형의 귀납적 학습방법 모형의 다른 3가지 어휘표현방법 3가지를 모형별로 비교 분석하였다. 분석결과 인공신경망모형은 상당한 예측력을 갖고 있는 것으로 판명되었으며, 특히 CART를 기반으로 한 일상어취 기반의 선물가격예측 모형은 예측력이 높은 것으로 나타났다.

  • PDF

Calculation of Non-revenue Water Ratio through the Artificial Neural Network of Water Distribution System (인공신경망을 이용한 상수관망 내 무수율 산정)

  • Jang, Dong Woo;Choi, Gye Woon;Park, Hyo Seon;Jo, Hyoung Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.120-120
    • /
    • 2017
  • 인천지역의 상수도공급은 팔당댐을 취수원으로 하여 도수, 송수관을 거쳐 인천지역 내 정수장을 통하여 각 급수지역까지 일원화된 관로시스템으로 공급되고 있다. 관망에서의 적절한 수압관리, 노후관로 교체사업 등은 급수관망 내 관로 사고위험을 줄일 수 있고, 누수량을 저감하여 무수율의 감소로 이어질 수 있다. 상수관망 내 누수에 영향을 주는 물리적, 운영적 요소를 파악하고, 이를 이용하여 누수해결을 위한 방법론을 제시하는 것은 매우 중요하다. 본 연구에서는 인천시 배수관망 데이터를 활용하여 통계분석 및 인공신경망을 통하여 무수율에 영향을 미치는 인자를 선별하고, 무수율과의 연관성을 분석하고자 하였다. 이를 위해 대상지역에 대한 시설현황 및 운영자료를 취득하고, 무수율 분석에 활용하였다. 인천시의 소블럭을 대상으로 관로노후도, 배수관연장, 평균관경, 급수전당 공급량, 누수발생 횟수, 용도지역, 관망구성 형태 등을 고려하여 무수율과의 관계분석을 위한 통계분석을 수행하였다. 특히 급수에 필요한 최소에너지와 관망에서 공급되는 에너지를 비교하기 위하여 관망해석 프로그램인 EPANET을 이용하여 관망내 절점에서의 수압과 수요량이 적용된 최소공급에너지를 활용하였고, 이를 통하여 블록 내 과잉공급에너지와 무수율의 영향성을 비교하였다. 최종적으로 산출된 주요인자에 대한 주성분분석, 분산분석, 다중회귀분석 등의 통계분석과 인공신경망에 의해 학습된 알고리즘을 통하여 산정된 무수율을 실측 무수율과 비교, 분석하였다. 인공신경망에 의해 산정된 무수율과 실측 무수율의 정확도를 평가하기 위하여 MAE, MSE, PBIAS 등의 정확도 평가와 산점도 분석을 수행하고, 상관계수를 도출하여 가장 정확한 방법을 결정하였다. 분석 결과 통계분석에 의한 다중회귀식으로 산출된 무수율 보다 인공신경망에 의한 무수율이 실측값에 더욱 근접한 것으로 나타났으며 이용된 뉴런의 수의 따라 산출결과가 상이하기 때문에 최적 뉴런의 수를 산정해야 할 필요가 있음을 확인하였다. 특히 사용된 상수관망 주요인자 중 주성분분석을 통하여 선정된 각 성분을 인공신경망에 적용시 더욱 정확한 무수율 예측이 가능한 것으로 나타났다.

  • PDF

Dam Basin-scale Regionalization of Large-scale Model Output using the Artificial Neural Network (인공신경망모형을 이용한 대규모 대기모형모의결과의 댐유역스케일에서의 지역화기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-183
    • /
    • 2009
  • 본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.

  • PDF

A Study on the Two-Phased Hybrid Neural Network Approach to an Effective Decision-Making (효과적인 의사결정을 위한 2단계 하이브리드 인공신경망 접근방법에 관한 연구)

  • Lee, Geon-Chang
    • Asia pacific journal of information systems
    • /
    • v.5 no.1
    • /
    • pp.36-51
    • /
    • 1995
  • 본 논문에서는 비구조적인 의사결정문제를 효과적으로 해결하기 위하여 감독학습 인공신경망 모형과 비감독학습 인공신경망 모형을 결합한 하이브리드 인공신경망 모형인 HYNEN(HYbrid NEural Network) 모형을 제안한다. HYNEN모형은 주어진 자료를 클러스터화 하는 CNN(Clustering Neural Network)과 최종적인 출력을 제공하는 ONN(Output Neural Network)의 2단계로 구성되어 있다. 먼저 CNN에서는 주어진 자료로부터 적정한 퍼지규칙을 찾기 위하여 클러스터를 구성한다. 그리고 이러한 클러스터를 지식베이스로하여 ONN에서 최종적인 의사결정을 한다. CNN에서는 SOFM(Self Organizing Feature Map)과 LVQ(Learning Vector Quantization)를 클러스터를 만든 후 역전파학습 인공신경망 모형으로 이를 학습한다. ONN에서는 역전파학습 인공신경망 모형을 이용하여 각 클러스터의 내용을 학습한다. 제안된 HYNEN 모형을 우리나라 기업의 도산자료에 적용하여 그 결과를 다변량 판별분석법(MDA:Multivariate Discriminant Analysis)과 ACLS(Analog Concept Learning System) 퍼지 ARTMAP 그리고 기존의 역전파학습 인공신경망에 의한 실험결과와 비교하였다.

  • PDF

Optimal Network Selection Method for Artificial Neural Network Downscaling Method (인공신경망 Downscaling모형에 있어서 최적신경망구조 선택기법)

  • Kang, Boo-Sik;Ryu, Seung-Yeop;Moon, Su-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1605-1609
    • /
    • 2010
  • CGCM3.1 SRES B1 시나리오의 2D 변수들을 입력값으로 인공신경망 모형을 이용한 스케일 상세화기법으로 강부식(2009)은 소양강댐 유역의 월 누적강수 경향분석을 실시하였다. 원시 GCM 시나리오를 스케일 상세화 시키기 위한 기법의 하나로 인공신경망 모형을 사용할 수 있는데, 이 경우 GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면 근처에서의 일평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수를 잠재적인 예측인자로 사용하여 신경망을 구성하게 된다. 입력변수세트의 구성은 인공신경망의 계산 효율을 좌우하는 중요한 요소라 할 수 있다. 본 연구에서는 변수의 물리적 특성을 고려하여 순차적인 변수선택을 통한 신경망 입력변수 세트를 구성하고 입력세트 간의 학습성과 비교를 통하여, 최적 입력변수 선정 및 신경망의 학습효과를 높일 수 있는 방법에 대해 연구하였다. 물리적 상관성이 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 하여 순차적인 케이스를 학습해본 결과 huss와 ps를 입력변수로 하는 케이스에 대해서 적은 오차와 높은 상관성을 보였다, 또한, 신경망의 학습 효과를 높이기 위해 홍수기와 비홍수기로 구분하여 학습한 결과 홍수기와 비홍수기로 구분하여 신경망을 구성하였을 경우가 향상된 모의값을 나타내었다. 기후변화모의자료는 CCCma(Canadian Center for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 관측값으로는 AWS에서 제공된 일 누적강수를 사용하였다. 인공신경망의 학습기간은 1997년부터 2000년이며, 검증기간은 2001년부터 2004년으로 구성하였다.

  • PDF

Calibration of Real Time Rainfall Data Using Mutual Information and Artificial Neural Network (상호정보량 기법과 인공신경망을 이용한 실시간 강우 자료 보정)

  • Sung, Kyung-Min;Goo, Yeo-Joo;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1269-1273
    • /
    • 2010
  • 이러한 강우자료의 결측값이나 오자료를 보정하는 것은 그 유역의 정확한 수문학적 특성 파악 및 안전한 수공구조물의 설계에 영향을 미치게 되므로 매우 중요하다고 할 수 있다. 최근 이러한 강우자료를 비선형적 모델인 인공신경망(Artificial Neural Network)을 이용하여 보정하는 연구가 활발히 진행되고 있다(오재우 등, 2008). 그러나 이러한 인공신경망을 적용하는 경우, 선택한 신경망 구조의 형태와 학습(training)을 위해 사용되는 자료가 전체 자료의 특성을 반영하고 있는 정도에 따라 정확도에 차이를 보인다(한광희 등, 2010). 따라서 자료보정을 위한 입력 자료의 선택은 인공신경망을 이용한 결측치 보정의 중요한 과정이다. 본 연구에서는 이러한 입력 자료의 선택을 위한 여러 가지 기법 중 입력 변수간의 상호정보량 (Mutual Information)을 이용한 방법을 적용하여 대상 결측 지점을 보정할 강우지점을 선별한 후 선택된 지점만으로 인공신경망을 구성하여 강우자료를 보정하고 주변 자료를 모두 이용한 결과와 상관성분석으로 얻어진 결과와 비교하였다.

  • PDF

Mutual Information Technique for Selecting Input Variables of RDAPS (RDAPS 입력자료 선정을 위한 Mutual Information기법 적용)

  • Han, Kwang-Hee;Ryu, Yong-Jun;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1141-1144
    • /
    • 2009
  • 인공신경망(artificial neural network) 기법은 인간의 두뇌 신경세포의 활동을 모형화한 것으로 오랜 시간동안 발전해 왔으며 여러 분야에서 활용되고 있고 수문분야에서도 인공신경망을 이용한 연구가 활발히 진행되어 왔다. RDAPS와 같은 단기수치예보 자료는 강우의 유무 판단과 같은 정성적인 분석에서 비교적 정확도가 높지만 정확한 강우량의 추정과 같은 정량적인 부분에서는 정확도가 매우 낮으므로 인공신경망 기법과 같은 후처리 기법을 통해서 정확도를 높이게 된다. 인공신경망 기법을 수행할 때, 가장 중요한 것은 입력변수선택(input variable selection)으로 입력 변수의 적절한 선택이 결과값에 큰 영향을 주게 된다. 본 연구에서는 mutual information을 입력 변수 선택 기법으로 채택하여, 인공신경망의 입력변수 선정의 정확도를 알아보고자 한다. Mutual information은 주어진 자료의 엔트로피값을 이용하여 변수들 간의 독립과 종속의 관계를 나타내는 기법으로서, MI값은 '0'에서 '1'의 값을 가지며 '0'에 가까울수록 변수들 간의 관계가 독립적이고 '1'에 가까울수록 종속적인 관계를 나타낸다. 인공신경망의 입력변수선정에 대한 mutual information의 정확도를 알아보기 위해, 기존 입력변수선택 기법과 mutual information을 이용했을 경우의 인공신경망의 처리능력, 정확도를 비교 검토하였다.

  • PDF

Prediction of Lateral Deflection of Model Piles Using Artificial Neural Network by the Application Readjusting Method (Readjusting 기법을 적용한 인공신경망의 모형말뚝 수평변위 예측)

  • 김병탁;김영수;정성관
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • 본 논문에서는 단일 및 군말뚝의 수평변위를 예측하기 위하여 신경망 학습속도의 향상과 지역 최소점 수렴을 방지하는 Readjusting 기법을 적용한 인공신경망을 도입하였다. 이 인공신경망을 M-EBPNN 이라고 한다. M-EBPNN에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였으며, 그리고 신경망의 학습속도와 지역 최소점의 수렴성을 평가하기 위하여 오류 역전파 신경망(EBPNN)의 결과와도 비교 분석하였다. M-EBPNN의 적용성 검증을 위하여 200개의 모형실험결과들을 이용하였으며, 신경망의 구조는 EBPNN의 구조와 동일한 한 개의 입력층과 두 개의 은닉층 그리고 한 개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학습에 이용하지 않은 데이터들은 예측에 이용되었다. 그리고, 신경망의 최적학습을 위하여 적합한 은닉층의 뉴런 수와 학습률은 EBPNN에서 결정한 값들을 본 신경망에 이용하였다. 해석결과들에 의하면, 동일한 학습패턴에서의 M-EBPNN이 학습 반복횟수는 EBPNN 보다 최고 88% 감소하였으며 지역 최소점에 수렴하는 현상은 거의 나타나지 않았다. 따라서, 인공신경망 모델이 수평하중을 받는 말뚝의 수평변위 예측에 적용될 수 있는 가능성을 보여 주었다.

  • PDF

A study on nonlinear transform layers in neural networks for image compression (정지영상 압축을 위한 인공신경망 내 비선형 변환 계층 분석)

  • Lee, Jooyoung;Cho, Seunghyun;Kim, Hui Yong;Choi, Jin Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.267-269
    • /
    • 2018
  • 인공신경망의 확산 및 보급에 따라 적용 영역이 확대되고 있으며 여러 분야에서 획기적인 성능 향상을 이루고 있다. 영상 압축 분야의 기술개발은 기존 코덱 구조 내 각 요소기술의 성능향상을 위한 인공신경망 기술 분야와 기존 코덱 구조가 아닌 end-to-end 학습을 통한 인공신경망 기반 기술 분야로 나뉘어 진행되고 있다. 본 논문에서는 end-to-end 학습을 통한 인공신경망 기술의 비선형 변환 계층 중 GDN(generalized divisive normalization) 계층이 영상 압축에 미치는 영향을 분석한다.

  • PDF

Optimization of Artificial Neural Network Inference by ReLU Function Prediction (ReLU 함수의 예측을 통한 인공 신경망 추론 연산 최적화)

  • Park, Sangwoo;Kim, Hanyee;Suh, Taeweon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.699-701
    • /
    • 2018
  • 본 연구는 인공 신경망 '추론'과정에서 연산량을 줄이는 아이디어를 고안했고, 이를 구현하여 기존 알고리즘과 성능을 비교 분석하였다. 특정 데이터 셋에 대한 실험을 통해 ReLU(Rectified Linear Unit) 함수의 결과를 분석했고, 그 결과를 통해 ReLU 함수의 결과가 예측가능함을 확인했다. 또한 인공 신경망 알고리즘에 ReLU 함수의 결과 예측 기법을 적용하여 인공 신경망 추론과정을 최적화했다. 이 아이디어를 기반으로 구현된 인공 신경망은 기존 아이디어로 구현된 인공 신경망에 비해 약 3배 빠른 성능을 보였다.