• Title/Summary/Keyword: 인공신경망 구조

Search Result 364, Processing Time 0.031 seconds

Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선)

  • Kim, Young-Sang;Joo, No-Ah;Park, Hyun-Il;Park, Sol-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.115-125
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by insitu test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

Application of Artificial Neural Networks to Predict Ultimate Shear Capacity of PC Vertical Joints (PC 수직 접합부의 극한 전단 내력 예측에 대한 인공 신경 회로망의 적용)

  • 김택완;이승창;이병해
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-101
    • /
    • 1996
  • An artificial neural network is a computational model that mimics the biological system of the brain and it consists of a number of interconnected processing units where it can reasonably infer by them. Because the neural network is particularly useful for evaluating systems with a multitude of nonlinear variables, it can be used in experimental results predictions, in structural planning and in optimum design of structures. This paper describes the basic theory related to the neural networks and discusses the applicability of neural networks to predict the ultimate shear capacity of the precast concrete vertical joints by comparing the neural networks with a conventional method such as regression.

  • PDF

Application of recurrent neural network for inflow prediction into multi-purpose dam basin (다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가)

  • Park, Myung Ky;Yoon, Yung Suk;Lee, Hyun Ho;Kim, Ju Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1217-1227
    • /
    • 2018
  • This paper aims to evaluate the applicability of dam inflow prediction model using recurrent neural network theory. To achieve this goal, the Artificial Neural Network (ANN) model and the Elman Recurrent Neural Network(RNN) model were applied to hydro-meteorological data sets for the Soyanggang dam and the Chungju dam basin during dam operation period. For the model training, inflow, rainfall, temperature, sunshine duration, wind speed were used as input data and daily inflow of dam for 10 days were used for output data. The verification was carried out through dam inflow prediction between July, 2016 and June, 2018. The results showed that there was no significant difference in prediction performance between ANN model and the Elman RNN model in the Soyanggang dam basin but the prediction results of the Elman RNN model are comparatively superior to those of the ANN model in the Chungju dam basin. Consequently, the Elman RNN prediction performance is expected to be similar to or better than the ANN model. The prediction performance of Elman RNN was notable during the low dam inflow period. The performance of the multiple hidden layer structure of Elman RNN looks more effective in prediction than that of a single hidden layer structure.

A Study on the Multi-Level Artificial Neural Networks Using Genetic Algorithm for Preliminary Structural Design (예비 구조설계를 위한 유전알고리즘을 이용한 다단계 인공신경망에 관한 연구)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.443-452
    • /
    • 2004
  • Recently, the Artificial Neural Network(ANN) which can organize complex non-linear problems by effectively applying the parallel computational model that is similar to the human brain, was adopted in the wide department of technology and resulted in many successful applications. In this study, a more appropriate formal method is suggested for the preliminary structural design stage controlled merely by the designer's experience and intuition. To do so, this study proposes a multi-level ANN according to the general progressive structural design procedure, using Back-Propagation Algorithm (BP) and Genetic Algorithm (GA) for the ANN learning. The preliminary structural design of cable-stayed bridges was applied to illustrate the applicability of the study formulated as stated above, and the results of two different learning methods were compared.

A Study on Compression of Connections in Deep Artificial Neural Networks (인공신경망의 연결압축에 대한 연구)

  • Ahn, Heejune
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.17-24
    • /
    • 2017
  • Recently Deep-learning, Technologies using Large or Deep Artificial Neural Networks, have Shown Remarkable Performance, and the Increasing Size of the Network Contributes to its Performance Improvement. However, the Increase in the Size of the Neural Network Leads to an Increase in the Calculation Amount, which Causes Problems Such as Circuit Complexity, Price, Heat Generation, and Real-time Restriction. In This Paper, We Propose and Test a Method to Reduce the Number of Network Connections by Effectively Pruning the Redundancy in the Connection and Showing the Difference between the Performance and the Desired Range of the Original Neural Network. In Particular, we Proposed a Simple Method to Improve the Performance by Re-learning and to Guarantee the Desired Performance by Allocating the Error Rate per Layer in Order to Consider the Difference of each Layer. Experiments have been Performed on a Typical Neural Network Structure such as FCN (full connection network) and CNN (convolution neural network) Structure and Confirmed that the Performance Similar to that of the Original Neural Network can be Obtained by Only about 1/10 Connection.

Selection of the Number and Location of Monitoring Sensors using Artificial Neural Network based on Building Structure-System Identification (인공신경망 기반 건물 구조물 식별을 통한 모니터링센서 설치 개수 및 위치 선정)

  • Kim, Bub-Ryur;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.303-310
    • /
    • 2020
  • In this study, a method for selection of the location and number of monitoring sensors in a building structure using artificial neural networks is proposed. The acceleration-history values obtained from the installed accelerometers are defined as the input values, and the mass and stiffness values of each story in a building structure are defined as the output values. To select the installation location and number of accelerometers, several installation scenarios are assumed, artificial neural networks are obtained, and the prediction performance is compared. The installation location and number of sensors are selected based on the prediction accuracy obtained in this study. The proposed method is verified by applying it to 6- and 10-story structure examples.

Simulation-Based Damage Estimation of Helideck Using Artificial Neural Network (인공 신경망을 사용한 시뮬레이션 기반 헬리데크 손상 추정)

  • Kim, Chanyeong;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.359-366
    • /
    • 2020
  • In this study, a simulation-based damage estimation method for helidecks is proposed using an artificial neural network. The structural members that share a connecting node in the helideck are regarded as a damage group, and a total of 37,400 damage scenarios are numerically generated by applying randomly assigned damage to up to three damage groups. Modal analysis is then performed for all the damage scenarios, which are selectively used as either training or validation or verification sets based on the purpose of use. An artificial neural network with three hidden layers is constructed using a PyTorch program to recognize the patterns of the modal responses of the helideck model under both damaged and undamaged states, and the network is successively trained to minimize the loss function. Finally, the estimated damage rate from the proposed artificial neural network is compared to the actual assigned damage rate using 400 verification scenarios to show that the neural network is able to estimate the location and amount of structural damage precisely.

Damage Evaluation of a Framed Structure Using Wavelet Packet Transform (웨이블렛펙킷 변환을 이용한 프레임 구조물의 건전성 평가)

  • Kim, Han Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.159-166
    • /
    • 2007
  • This paper evaluates the soundness of structural elements using Wavelet Packet Transform (WPT). WPT is applied to the response acceleration of a framed structure which is subjected to earthquake load to decompose the response acceleration, then the energy of each component is calculated. The first five largest components in energy magnitude among the decomposed components are selected as input to an ANN to identify the damage location and severity. Two nodes in output layer yield damaged element and damage severity respectively. This method successfully evaluates the amount of damage and its location in the structure.

인공신경망간의 결합에 의한 시계열 모형화에 관한 연구

  • 오상봉
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1998.10a
    • /
    • pp.665-670
    • /
    • 1998
  • 본 연구에서는 시계열자료의 ARMA 모형화를 위해 의사결정트리 분류기상에 존재하는 인공신경망의 구조를 개선하여 이들 각각의 인공신경망으로부터 도출된 결과를 Dempster's rule of combination을 이용하여 결합할 수 있는 방법론을 제시하고 있다. 인공신경망을 이용한 기존의 ARMA 모형화 방법과 비교한 결과, 본 연구에서는 제시한 방법이 주어진 ESACF 특성패턴에 대해 보다 정확하게 ARMA 모형화를 하는 것으로 나타났다.

ANN-Based Real-Time Damage Detection Technique Using Acceleration Signals in Beam-Type Structures (보 구조물의 가속도 신호를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Park, Jae-Hyung;Lee, Yong-Hwan;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.229-237
    • /
    • 2007
  • In this study, an artificial neural network (ANN)-based damage detection algorithm using acceleration signals is developed for real-time alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed tot damage detection in real time. The cross-covariance of two acceleration-signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained lot potential loading Patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.