• Title/Summary/Keyword: 인공신경망기법

Search Result 667, Processing Time 0.029 seconds

ANN-Based Real-Time Damage Detection Technique Using Acceleration Signals in Beam-Type Structures (보 구조물의 가속도 신호를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Park, Jae-Hyung;Lee, Yong-Hwan;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.229-237
    • /
    • 2007
  • In this study, an artificial neural network (ANN)-based damage detection algorithm using acceleration signals is developed for real-time alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed tot damage detection in real time. The cross-covariance of two acceleration-signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained lot potential loading Patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

Acceleration of CNN Model Using Neural Network Compression and its Performance Evaluation on Embedded Boards (임베디드 보드에서의 인공신경망 압축을 이용한 CNN 모델의 가속 및 성능 검증)

  • Moon, Hyeon-Cheol;Lee, Ho-Young;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.44-45
    • /
    • 2019
  • 최근 CNN 등 인공신경망은 최근 이미지 분류, 객체 인식, 자연어 처리 등 다양한 분야에서 뛰어난 성능을 보이고 있다. 그러나, 대부분의 분야에서 보다 더 높은 성능을 얻기 위해 사용한 인공신경망 모델들은 파라미터 수 및 연산량 등이 방대하여, 모바일 및 IoT 디바이스 같은 연산량이나 메모리가 제한된 환경에서 추론하기에는 제한적이다. 따라서 연산량 및 모델 파라미터 수를 압축하기 위한 딥러닝 경량화 알고리즘이 연구되고 있다. 본 논문에서는 임베디트 보드에서의 압축된 CNN 모델의 성능을 검증한다. 인공지능 지원 맞춤형 칩인 QCS605 를 내장한 임베디드 보드에서 카메라로 입력한 영상에 대해서 원 CNN 모델과 압축된 CNN 모델의 분류 성능과 동작속도 비교 분석한다. 본 논문의 실험에서는 CNN 모델로 MobileNetV2, VGG16 을 사용했으며, 주어진 모델에서 가지치기(pruning) 기법, 양자화, 행렬 분해 등의 인공신경망 압축 기술을 적용하였을 때 원래의 모델 대비 추론 시간 및 분류의 정확도 성능을 분석하고 인공신경망 압축 기술의 유용성을 확인하였다.

  • PDF

딥러닝을 활용한 선박가치평가 모델 개발

  • Choi, Jung-suk;Kim, Donggyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.108-110
    • /
    • 2020
  • 본 연구의 목적은 딥러닝 기법의 하나인 인공신경망 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 선박의 가치는 해운시장 변화와 밀접한 관계가 있으며, 경기 변동성이 크고 시장 민감성이 높은 해운시장의 특성상 가치의 불확실성 역시 높게 나타나고 있다. 이러한 선박가치의 중요성에도 불구하고 국내외적으로 선박가치평가의 체계 개선 및 평가모델의 객관성과 신뢰성을 제고시키기 위한 연구는 부족한 실정이다. 따라서 본 연구에서는 딥러닝 방법을 통해 선박의 가치를 산출하는 새로운 평가모델을 제시하고자 한다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고 2010년 1월부터 현재까지의 해당 데이터를 확보하였다. 교차검증을 통해 파라미터들을 추정하여 인공신경망의 최적 구조를 식별하고 이에 대한 객관성과 신뢰성을 검증한 결과 인공신경망 모델의 가치평가 정확성이 우수함을 확인하였다. 본 연구는 선박가치평가의 전통적 방법론에서 탈피하여 기계학습 기반의 딥러닝 모델을 활용한 측면에서 독창적인 의미가 있다.

  • PDF

An Artificial Neural Network for Efficiently Learning Representation of Screened Foam Generation (스크린드 거품 생성을 효율적으로 학습 표현하는 인공신경망)

  • Kim, Donghui;Yun, Ju-Young;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.557-558
    • /
    • 2022
  • 본 논문에서는 인공신경망을 통해 화면에 투영된 거품입자를 효율적으로 생성할 수 있는 기법에 대해 소개한다. 유체 시뮬레이션 기반으로 바다거품을 계산하기 위해서는 유체역학과 수치해석학에 대한 이해가 필요하며, 유속의 유기물, 풍속 등 다양한 물리적 요소를 고려해야하기 때문에 복잡하고 계산양이 커진다. 오일러리안(Eulerian)접근법에서는 격자의 해상도가 커지게 되고, 라그랑지안(Lagrangian)접근법에서는 입자의 개수가 많아지기 때문에 이 문제를 다루기 쉽지 않은 문제이다. 이러한 문제를 완화하기 위해 본 논문에서는 인공신경망을 이용한 분류 모델 학습을 통해 3차원 유체 시뮬레이션으로부터 투영된 2차원 스크린 이미지로부터 거품이 생성될 위치를 예측한다. 결과적으로 물의 스크린에 투영된 물 입자의 깊이와 가속도로부터 거품의 생성 위치를 예측함으로서 복잡한 수치해석학 없이 학습을 통해 효율적으로 거품을 표현하는 결과를 보여준다.

  • PDF

Rancidity Estimation of Perilla Seed Oil using NIR Spectroscopy and Multi-variate Analysis Techniques (근적외선 분광기법과 인공신경망을 이용한 식용유지의 산패 분석)

  • Lee, Ah-Yeong;Hong, Suk-Ju;Rho, Shin-Jung;Park, Heesoo;Kim, Yong-Ro;Kim, Ghiseok
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.98-98
    • /
    • 2017
  • 대부분의 가정과 요식업체, 식품가공업계에서 이용하고 있는 식용유지는 저장 및 가공과정 중에 산패가 빈번하게 일어나게 된다. 기존에는 유지 산패를 측정하기 위해 산가, 과산화물가 등을 측정하는 이화학적인 적정방법을 이용하였는데 실험자의 숙련도에 따라 결과의 오차가 발생할 수 있고, 반복실험으로 인한 시간과 비용이 많이 소모되는 등 여러 제약사항을 포함하고 있어 식용유지의 산패를 실시간 비파괴적으로 분석할 수 있는 기술의 개발에 많은 관심이 모아지고 있다. 따라서, 본 연구에서는 식용유지의 저장조건에 따른 산패정도를 비파괴적으로 평가하기 위한 근적외선 분광분석과 인공신경망 분석기술을 개발하여 그 실효성을 평가하였다. 식물성 식용유지인 들기름을 특정 온도에서 일정한 시간동안 저장하면서 이화학적 적정방법을 통해 산가와 과산화물가를 측정하였으며 동일한 시료의 근적외선 투과스펙트럼을 획득하였다. 수집된 정보를 이용하여 유지 산패 예측 모델을 개발하기 위해 다변량 분석기법 (주성분 회귀분석, 최소자승 회귀분석과 인공신경망 분석)을 적용하였다. 분석 결과, 인공신경망 분석모델이 산가 ($R^2_{tra}:0.9037$, $R^2_{val}:0.8175$, $R^2_{test}:0.8555$)와 과산화물가 ($R^2_{tra}:0.9210$, $R^2_{val}:0.9341$, $R^2_{test}:0.8286$)의 예측 성능이 가장 우수한 것으로 확인되었다. 본 연구의 결과들은 농산물과 식품의 성분 측정뿐만 아니라 다른 산업분야에서도 유용하게 활용될 수 있을 것으로 기대되어진다.

  • PDF

2D Game Image Color Synthesis System Using Convolutional Neural Network (컨볼루션 인공신경망을 이용한 2차원 게임 이미지 색상 합성 시스템)

  • Hong, Seung Jin;Kang, Shin Jin;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.18 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • The recent Neural Network technique has shown good performance in content generation such as image generation in addition to the conventional classification problem and clustering problem solving. In this study, we propose an image generation method using artificial neural network as a next generation content creation technique. The proposed artificial neural network model receives two images and combines them into a new image by taking color from one image and shape from the other image. This model is made up of Convolutional Neural Network, which has two encoders for extracting color and shape from images, and a decoder for taking all the values of each encoder and generating a combination image. The result of this work can be applied to various 2D image generation and modification works in game development process at low cost.

이미지 기반 적대적 사례 생성 기술 연구 동향

  • O, Hui-Seok
    • Review of KIISC
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.

Application of Artificial Neural Network to Improve Quantitative Precipitation Forecasts of Meso-scale Numerical Weather Prediction (중규모수치예보자료의 정량적 강수추정량 개선을 위한 인공신경망기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.97-107
    • /
    • 2011
  • For the purpose of enhancing usability of NWP (Numerical Weather Prediction), the quantitative precipitation prediction scheme was suggested. In this research, precipitation by leading time was predicted using 3-hour rainfall accumulation by meso-scale numerical weather model and AWS (Automatic Weather Station), precipitation water and relative humidity observed by atmospheric sounding station, probability of rainfall occurrence by leading time in June and July, 2001 and August, 2002. Considering the nonlinear process of ranfall producing mechanism, the ANN (Artificial Neural Network) that is useful in nonlinear fitting between rainfall and the other atmospheric variables. The feedforward multi-layer perceptron was used for neural network structure, and the nonlinear bipolaractivation function was used for neural network training for converting negative rainfall into no rain value. The ANN simulated rainfall was validated by leading time using Nash-Sutcliffe Coefficient of Efficiency (COE) and Coefficient of Correlation (CORR). As a result, the 3 hour rainfall accumulation basis shows that the COE of the areal mean of the Korean peninsula was improved from -0.04 to 0.31 for the 12 hr leading time, -0.04 to 0.38 for the 24 hr leading time, -0.03 to 0.33 for the 36 hr leading time, and -0.05 to 0.27 for the 48 hr leading time.

Determination of Weight of environmental/ecological assessment Factors of Environmental Conservation Value Assessment Map (ECVAM) in Korea using Artificial Neural Network and GIS (인공신경망 및 GIS를 이용한 국토환경성평가지도 환경.생태적항목 가중치 분석)

  • Lee, Moung-Jin;Jeon, Seong-Woo;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.237-240
    • /
    • 2008
  • 본 연구의 목적은 인공신경망 기법을 이용하여 2006년 전국을 대상으로 구축된 국토환경성평가지도의 환경 생태적항목에 대한 각 항목별 가중치를 결정하는 것이다. 기본 분석 도구로 지리정보시스템(GIS)가 사용되었다. 국토환경성평가지도의 환경 생태적항목은 다양성(생태자연도), 자연성(임상도, 녹지자연도, 생태자연도), 풍부도(생태계변화관찰 지역도), 희귀성(생태자연도), 허약성(수치지형도, 토지피복도), 군집구조의 안정성(임상도)등이 활용되어 구축되었다. 본 연구는 기 구축되어 사용되고 있는 국토환경성평가 지도의 환경 생태적항목을 공간 데이터베이스를 이용하고, 인공신경망 기법을 적용하여 각 평가항목간의 상대적 가중치를 구하였다. 인공신경망의 훈련 지역은 환경 생태적항목중 환경성이 높은 1등급 지역 및 환경성이 낮은 5등급 지역을 추출하였다. 그 결과 50번의 가중치를 산정하였을 경우 허약성이 다른 항목들에 비해 1.58배 정도 높은 상대적 가중치를 나타냈다. 이러한 가중치는 국토환경성평가지도 환경 생태적 항목의 취약성도를 작성하는데 활용될 수 있다.

  • PDF

A Study on the Regional Frequency Analysis Using the Artificial Neural Network Method - the Nakdong River Basin (인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 낙동강 유역을 중심으로)

  • Ahn, Hyunjun;Kim, Sunghun;Jung, Jinseok;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.404-404
    • /
    • 2017
  • 이상기후현상으로 인해 극치 수문 사상들이 빈번히 발생함에 따라 상대적으로 높은 재현기간에 해당하는 극치 수문 사상해석에 대한 관심이 높아지고 있다. 그러나 우리나라의 경우 이러한 극치 수문 사상을 추정하기 위한 표본의 수가 부족한 실정이다. 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다는 장점을 가지고 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있다. 지역구분은 지역빈도해석이 지점빈도해석과 구분될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 인공신경망은 인간의 뇌가 학습하는 방식을 모사한 통계적 모델링 기법이다. 즉, 인간의 뇌가 일정한 반복 학습을 통해 어떠한 문제의 해법을 추론하거나 예측, 또는 패턴을 인식하는 일련의 과정을 알고리즘화 하여 목적함수의 해를 찾는 방식이다. 특히, 주어진 자료들로 부터 특징을 추출하고 그 특징을 학습하여 전체 자료의 분류나 군집화를 이루는데 널리 이용되고 있다. 본 연구에서는 낙동강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도해석을 수행하였다.

  • PDF