• Title/Summary/Keyword: 인공신경망기법

Search Result 667, Processing Time 0.033 seconds

Prediction of Lateral Deflection of Model Piles Using Artificial Neural Network by the Application Readjusting Method (Readjusting 기법을 적용한 인공신경망의 모형말뚝 수평변위 예측)

  • 김병탁;김영수;정성관
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • 본 논문에서는 단일 및 군말뚝의 수평변위를 예측하기 위하여 신경망 학습속도의 향상과 지역 최소점 수렴을 방지하는 Readjusting 기법을 적용한 인공신경망을 도입하였다. 이 인공신경망을 M-EBPNN 이라고 한다. M-EBPNN에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였으며, 그리고 신경망의 학습속도와 지역 최소점의 수렴성을 평가하기 위하여 오류 역전파 신경망(EBPNN)의 결과와도 비교 분석하였다. M-EBPNN의 적용성 검증을 위하여 200개의 모형실험결과들을 이용하였으며, 신경망의 구조는 EBPNN의 구조와 동일한 한 개의 입력층과 두 개의 은닉층 그리고 한 개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학습에 이용하지 않은 데이터들은 예측에 이용되었다. 그리고, 신경망의 최적학습을 위하여 적합한 은닉층의 뉴런 수와 학습률은 EBPNN에서 결정한 값들을 본 신경망에 이용하였다. 해석결과들에 의하면, 동일한 학습패턴에서의 M-EBPNN이 학습 반복횟수는 EBPNN 보다 최고 88% 감소하였으며 지역 최소점에 수렴하는 현상은 거의 나타나지 않았다. 따라서, 인공신경망 모델이 수평하중을 받는 말뚝의 수평변위 예측에 적용될 수 있는 가능성을 보여 주었다.

  • PDF

Wireless Impedance-based Steel Bridge Health Monitoring Incorporating Neural Networks (인공신경망기법을 이용한 무선 임피던스 기반 강교량 건전성 모니터링)

  • Min, Ji-Young;Park, Seung-Hee;Yun, Chung-Bang;Shim, Hyo-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.658-661
    • /
    • 2010
  • 본 논문에서는 교량의 볼트 체결부, 응력집중부 등 손상의 발생이 유력한 위치에 부착된 압전센서-무선 임피던스 센서노드를 통해 구조물의 건전성을 지속적으로 모니터링 하는 시스템을 소개하였다. 임피던스 기반 건전성 모니터링에 있어서 구조물에 발생하는 손상에 따라 민감하게 반응하는 주파수 성분이 달라지기 때문에, 이러한 주파수 영역을 자동으로 결정함과 동시에 손상에 관한 정보를 획득하기 위하여 인공신경망 기법을 적용하였다. 제안된 기법은 기존에 구축되어 있는 데이터베이스를 기반으로 구조물에 발생한 손상의 종류 및 손상의 정도를 판단하는 것을 목적으로 한다. 무선 임피던스 센서노드-인공신경망 기반 손상탐색 통합 시스템은 실제 강교량에서 발생한 볼트풀림, 균열 등 국부적인 손상의 진단을 위하여 적용되었으며, 그 유효성을 입증하였다.

  • PDF

Comparison of Artificial Neural Networks and LARS-WG for Downscaling Climate Change Scenarios (기후변화 시나리오의 상세화를 위한 인공신경망과 LARS-WG의 모의 기법 평가)

  • Kim, Ji-Hye;Kang, Moon-Seong;Song, In-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.124-124
    • /
    • 2012
  • 기후변화가 수자원에 미치는 영향을 예측하는 데에 널리 사용되는 GCMs (General Circulation Models)는 모의 결과의 시 공간적 해상도가 낮기 때문에 상세화 (Downscaling) 기법을 거쳐 수문 모형에 적용된다. 상세화 기법은 크게 역학적 상세화 (Dynamical downscaling)와 통계적 상세화 (Statistical downscaling)로 구분되며, 종류가 매우 다양하고 각각의 모의 능력에 차이가 있으므로 적절한 기법을 선택할 필요가 있다. 본 연구의 목적은 통계적 상세화 기법 중 인공신경망과 LARS-WG 모형을 활용하여 CGCM3.1 T63의 모의 결과를 상세화하고, 두 모형의 모의 결과를 비교하는 데에 있다. 인공신경망은 비선형함수에 의한 전이함수 모형인 반면 LARS-WG는 추계학적 기상 발생기 모형으로, 각 모형을 이용해 CGCM3.1 T63의 강수량 및 평균기온 모의 결과를 서울 지역에 대해 공간적으로 상세화하였다. 모형의 검 보정은 1971년부터 2000년까지 30년 동안의 서울 관측소 일 기상 자료와 CGCM3.1 T63 (20C3M 시나리오) 모의 결과를 이용하여 수행하였다. 각 기법의 비교 및 평가는 2001년부터 2011년까지 11년 동안의 일 기상 자료와 CGCM3.1 T63 (IPCC SRES A1B 시나리오) 모의 결과를 이용하였다. 분석 결과, 인공신경망 모형은 입력 자료의 형태에 따라 모의 결과가 크게 달라지는 특성을 보였으며, LARS-WG 모형은 강수량을 실제보다 과소 추정하는 경향을 보였다. 본 연구에서는 강수량과 평균기온만을 대상으로 하였으나, 추후에 다른 기상인자를 고려함으로써 모형의 적용성을 보다 종합적으로 판단할 수 있을 것이다.

  • PDF

Study on Precipitation Prediction Technique using Artificial Neural Network (인공신경망을 이용한 강우예측기법에 관한 연구)

  • Yeo, Woon-Ki;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1412-1416
    • /
    • 2009
  • 최근의 극심한 기상이변으로 인하여 발생되는 이상호우의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우를 예측하기 위해 많은 방법들이 사용되고 있으나 강우의 메커니즘은 매우 복잡하여 수문순환과정에서 가장 예측하기 힘든 요소이며, 추계학적 예측모형이나 확정론적 예측모형 모두에 있어 상당한 불확실성을 내포하고 있다. 기상예측모형 등을 이용하여 강우예측에 대한 정도를 높여가고는 있으나 많은 수문학적 모형에서 요구하는 시공간적으로 정도가 높은 강우를 예측하기에는 힘들다. 인공신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 강우사상을 과거의 자료로부터 신경망의 수학적 알고리즘을 통해 강우의 예측에 적용할 수 있을 것이다. 따라서 본 연구에서는 이러한 인공신경망의 기법 중 오류 역전파 알고리즘을 통하여 과거의 강우사상들을 입 출력 자료로 이용하여 인공신경망을 학습시켜 강우의 예측에 대한 정도를 높이도록 하였다.

  • PDF

Application Assessment of water level prediction using Artificial Neural Network in Geum river basin (인공신경망을 이용한 금강 유역 하천 수위예측 적용성 평가)

  • Yu, Wansikl;Kim, Sunmin;Kim, Yeonsu;Hwang, Euiho;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.424-424
    • /
    • 2018
  • 인공신경망(Artificial Neural Network; ANN)은 뇌에 존재하는 생물학적 신경세포와 이들의 신호처리 과정을 수학적으로 묘사하여 뇌가 나타내는 지능적 형태의 반응을 구현한 것이다. 인공신경망은 학습(training)을 통해 입력과 출력으로 구성되는 하나의 시스템을 병렬적이고 비선형적으로 구축할 수 있으며, 유연한 모델링 특성으로 인하여 시스템 예측, 패턴인식, 분류 및 공정제어 등의 다양한 분야에서 활용되고 있다. 인공신경망에 대한 최초의 이론은 Muculloch and Pitts(1943)가 제안한 Perceptron에서 시작 되었으며, 기본적인 학습기법인 오차역전파 기법(back-propagation Algorithm) 이 1980년대에 들어 수학적으로 정립된 이후 여러 분야에서 활용되기 시작하였다). 본 연구에서는 하도추적, 구체적으로는 상류단의 복수의 수위관측을 이용하여 하류단의 수위를 예측하기 위하여 인공신경망 모델을 구성하였다. 대상하도는 금강유역의 용담댐과 대청댐 사이의 본류이며, 상류단 입력자료로써 본류에 있는 수통, 호탄 관측소 관측수위와 지류인 송천 관측소 관측수위를 고려하였다. 출력 값으로는 하류단의 옥천 관측소 수위를 3시간 및 6시간의 선행시간으로 예측하도록 인공신경망 모형을 구성하였다. 인공신경망의 학습(testing), 시험(testing), 검증(validation)을 위해 2000년부터 2012년까지 13년간의 시수위자료를 이용하여 학습을 진행하였으며, 2013년부터 2014년의 2년간의 수위자료를 이용한 시험을 통해 최적의 모형을 선정하였다. 또한 선정된 최적의 모형을 이용하여 2015년부터 2016년까지의 수위예측을 수행하였다.

  • PDF

Pricing of Derivative Securities Using Artificial Neural Network (파생 금융 상품의 가격 결정을 위한 인공 신경망 기법의 이용)

  • 조희연;양진설
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • 파생금융상품이란 주식이나 채권과 같은 기준자산에 대해서 발행되는 2차 금융상품으로써 기존의 재무이론에서는 수리적 모형에 기반을 둔 가격결정모형을 이용하여 가치를 평가하였다. 그러나 이러한 전통적인 가격결정모형은 복잡한 현실세계를 단순화시키기 위한 제반 가정을 요구하기 때문에 이러한 가정이 현실에 부적합한 경우에는 모형가격이 실제가격으로부터 커다란 괴리를 갖게 된다. 본 연구에서는 전통적인 가격결정방법의 단점을 극복할 수 있는 자료 의존적인 인공신경망기법을 제시하고 대표적인 파생금융상품인 국내 전환사채의 가격결정에 적용해 봄으로써 그 가능성을 제시하였다. 인공신경망기법을 전환사채의 가격결정에 적용한 결과 전통적 가격결정방법에 비해 평균절대오차를 70%정도 줄일 수 있다.

  • PDF

Groundwater level prediction model using artificial neural network technique (인공신경망기법을 이용한 지하수위 예측모형)

  • Chung, Il-Moon;Lee, Jeongwoo;Kim, Jitae;Park, Inchan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.562-562
    • /
    • 2016
  • 신경망 모형에서 학습이란 주어진 입출력시스템에 대하여 원하는 동작을 수행할 수 있도록 연결 강도를 최적의 상태로 적응(adaptation)시키는 과정을 의미한다. 따라서 강수와 지하수위의 관계를 연계시킨 인공신경망기법은 선택적으로 예측 지하수위에 영향을 미치는 변수들을 학습에 의하여 택함으로써 예측모형을 구성할 수 있다. 즉, 예측 지하수위와의 상관관계에 의하여 입력되는 변수와의 연결강도를 조정하여 매개변수 조정 및 모형의 최적화를 자동화할 수 있다. 본 연구에서는 지하수위에 영향을 주는 요소는 지하수위와 강우량이라고 가정하고, 지하수위의 입출력과정을 시계열 분석에 의하여 모형화하였으며 예측지하수위는 강우 및 지하수위의 선행조건과 매우 밀접한 관계를 갖는다. 따라서 선행강우 및 지하수위의 상태에 따라 이를 입력하여 미래의 지하수위를 예측하게 된다. 이 모형을 제주지역의 관측소에 적용한 결과 관측소별로 타당한 예측결과를 도출하였다.

  • PDF

Application on Prediction of Stream Flow using Artificial Neural Network with Mutual Information and Wavelet Transform (상호정보량기법과 웨이블렛변환을 적용한 인공신경망의 하천유량 예측 활용)

  • Ryu, Yong-Jun;Jung, Yong-Hun;Shin, Ju-Young;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.116-116
    • /
    • 2012
  • 하천유역 내의 인자를 이용하여 댐의 하천유량(stream flow)을 예측하는 일은 수문특성의 연구와 자연재해에 대한 대비 및 수공구조물과 방재시설의 설계 시 중요한 역할을 한다. 이러한 연구는 과거부터 활발히 이루어졌으며, 아직도 보다 높은 정확도의 결과를 얻기 위해 많은 연구들이 이루어지고 있다. 특히 기존의 유역 내 자료를 통해 비선형적 모델인 인공신경망(artificial neural network)을 이용한 하천유량을 예측하는 연구 역시 활발히 이루어지고 있다. 본 연구의 목적은 여러 유역인자들 중 하천유량에 가장 영향을 미치는 변수를 추출하고 보다 정확한 예측모델을 구축하는 것이다. 기존의 입력자료 선정기법중의 하나인 상호정보량(mutual information)과 수문기상자료의 비선형 동역학적 성분을 추출하는 웨이블렛 변환(wavelet transform)을 사용하여 인공신경망에 적용시켰다. 인공신경망을 적용하는 경우, 수문자료에 있어서 변수의 선택과 자료의 상태가 강우예측의 결과에 큰 영향을 미친다. 이러한 변수의 선택에 있어서 상호정보량을 바탕으로 한 인공신경망 입력변수 선택기법이 많이 사용되고 있다. 일반적으로 시계열자료는 경향성(trend), 주기성(periodicity) 및 추계학적 성분(stochastic component)의 선형조합으로 가정될 수 있으며, 특히 경향성과 주기성은 시계열 모형을 위해 제거되어야 할 결정론적 성분으로 취급한다. 즉. 수문 기상자료에 포함되어 있는 경향성과 주기성과 같은 비선형 동역학적 잡음(nonlinear dynamical noise)을 제거하고 입력자료의 카오스적 거동을 보이는 성분을 분리하기 위해 웨이블렛 변환을 사용하였다. 대상유역은 한강 유역에 포함되어 있는 충주댐으로 선택하였다. 유역 내 다양한 인자들과 하천유량사이의 상호정보량을 구해 영향력이 가장 큰 변수를 추출하고, 그 자료를 웨이블렛 변환을 적용하여 인공신경망의 입력자료로 사용하였다. 본 논문에서는 위와 같은 과정을 이용해 추정한 하천유량 결과와 기존의 방법인 상호정보량을 이용해 인공신경망을 적용한 결과를 실제자료와 비교하였다.

  • PDF

Application of Artificial Neural network in container traffic forecasting (컨테이너물동량 예측에 있어 인공신경망모형의 활용에 관한 연구)

  • Shin, Chang-Hoon;Jeong, Su-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.108-109
    • /
    • 2010
  • 본 연구에서는 비선형예측기법으로서 그 우수성을 인정받고 있는 인공신경망모형을 사용하여 컨테이너 물동량 예측을 수행하였다. 그러나 인공신경망모형을 사용해 시계열의 예측결과를 ARIMA모형과 같이 널리 알려진 다른 전통적인 수요예측기법들과 비교 평가한 과거 연구들을 보게 되면 각기 주장하는 바와 그 결론이 상반됨을 알 수 있다. 그래서 인공신경망의 예측성과를 높이기 위한 기존의 선행연구들의 다양한 시도들을 바탕으로 국내 항만의 컨테이너물동량을 예측하고, 그를 통해 여러 모형간의 비교 검증작업을 수행하였다.

  • PDF

Short-Term Rainfall Forecast Using Artificial Neural Network and CAPPI (인공신경망과 CAPPI 자료를 이용한 단기 강우예측)

  • Jee, Gye-Hwan;Oh, Kyoung-Doo;Ahn, Won-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.72-76
    • /
    • 2011
  • 본 연구는 레이더 강우 영상에서 추출된 강우 패턴을 인공신경망으로 처리하여 단기 강우 예측을 수행하는 방안을 제시한 것이다. 본 연구에 활용한 CAPPI 영상자료로는 편차 보정과 품질 관리가 이루어지고 있으며 획득이 용이한 기상청 자료를 이용하였으며 CAPPI의 PNG 영상으로부터 강우 패턴을 추출하고, 이를 역전파 알고리즘의 인공신경망 강우 예측 모형에 학습시켜 단기 강우를 예측하기 위한 절차를 제시하였다. 이를 위하여 강우의 시공간적 변화 패턴 추출을 위한 영상 처리와 GIS 자료처리 기법을 제시하였고 이를 인공신경망의 단기 강우 예측 학습과 검증에 적용하여 본 연구에서 제시된 기법의 타당성을 검토하였다.

  • PDF