• Title/Summary/Keyword: 인공배지 생산시스템

Search Result 3, Processing Time 0.023 seconds

Production of Environment-friendly Artificial Media for Agriculture Using Urban Sludge (도시발생 슬러지를 이용한 환경친화적 인공배지 생산)

  • 김선주;윤춘경;양용석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.102-111
    • /
    • 1998
  • Large amount of sludge have been generating in the process of water and wastewater treatment in urban area, and it has been making many environmental problems. Currently almost of sludge is landfilled, and since sludge is difficult to handle and dehydrate, the permeated water from the filled-in ground contaminate the surrounding soil and groundwater which may cause serious environmental and sociological problems. The organic component in sludge can be almost removed through the heat treatment process, and the final product is called artificial soil or artificial media according to the temperature control. To produce artificial media using sludge, chabazite and lime were used as an additive, and the mixture of sludge & additives was thermally treated in the firing kiln at about 800~1, 100。C for about fifteen minutes. The physical and chemical characteristics of the produced artificial media were analyzed, and it showed that it can be used as an artificial media for plant production or soil conditioner for farmland. The concentrations of the toxic heavy metals in the artificial media were lower than the soil quality standard for farmland. The characteristics of produced artificial media, using the mixture of sludge and additives through the heat treatment, is similar to the natural chabazite and soil. The analyzed result of the mineral composition of artificial media showed that it has a characteristics similar to natural stable soil, so the produced artificial media may be applied to farmland or water culture without causing adverse effect. Therefore this study showed that the above process can be a feasible alternative for sludge treatment.

  • PDF

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.

Recent Research Progress in the Microbial Production of Aromatic Compounds Derived from L-Tryptophan (미생물을 이용한 L-트립토판 유래 방향족 화합물 생산 최근 연구)

  • Lee, Ji-yeong;Lee, Jin-ho
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.919-929
    • /
    • 2020
  • Aromatic compounds are widely used in the chemical, food, polymer, cosmetic, and pharmaceutical industries and are produced by mainly chemical synthesis using benzene, toluene, and xylene or by plant extraction methods. Due to many rising threats, including the depletion of fossil fuels, global warming, the strengthening of international environmental regulations, and the excessive harvesting of plant resources, the microbial production of aromatic compounds using renewable biomass is regarded as a promising alternative. By integrating metabolic engineering with synthetic and systems biology, artificial biosynthetic pathways have been reconstituted from L-tryptophan biosynthetic pathway in relevant microorganisms, such as Escherichia coli and Corynebacterium glutamicum, enabling the production of a variety of value-added aromatic compounds, such as 5-hydroxytryptophan, serotonin, melatonin, 7-chloro-L-tryptophan, 7-bromo-L-tryptophan, indigo, indirubin, indole-3-acetic acid, violacein, and dexoyviolacein. In this review, we summarize the characteristics, usage, and biosynthetic pathways of these aromatic compounds and highlight the latest metabolic engineering strategies for the microbial production of aromatic compounds and suitable solution strategies to overcome problems in increasing production titers. It is expected that strain development based on systems metabolic engineering and the optimization of media and bioprocesses using renewable biomass will enable the development of commercially viable technologies for the microbial production of many aromatic compounds.