• Title/Summary/Keyword: 인공관절

Search Result 319, Processing Time 0.036 seconds

The Effect of Cultured Perichondrial Cell Sheet Covered Highly Active Engineered Cartilage: in vivo Comparative Assessment (배양연골막이 피복된 고효능 인공연골의 생체내 효과)

  • Park, Se-Il;Moon, Young-Mi;Jeong, Jae-Ho;Jang, Kwang-Ho;Ahn, Myun-Hwan
    • Journal of Veterinary Clinics
    • /
    • v.28 no.5
    • /
    • pp.486-496
    • /
    • 2011
  • A special mesenchymal tissue layer called perichondrium has a chondrogenic capacity and is a candidate tissue for engineering of cartilage. To overcome limited potential for chondrocyte proliferation and re-absorption, we studied a method of cartilage tissue engineering comprising chondrocyte-hydrogel pluronic complex (CPC) and cultured perichondrial cell sheet (cPCs) which entirely cover CPC. For effective cartilage regeneration, cell-sheet engineering technique of high-density culture was used for fabrication of cPCs. Hydrogel pluronic as a biomimetic cell carrier used for stable and maintains the chondrocytes. The human cPCs was cultured as a single layer and entirely covered CPC. The tissue engineered constructs were implanted into the dorsal subcutaneous tissue pocket on nude mice (n = 6). CPC without cPCs were used as a controls (N = 6). Engineered cartilage specimens were harvested at 12 weeks after implantation and evaluated with gross morphology and histological examination. Biological analysis was also performed for glycosaminoglycan (GAG) and type II collagen. Indeed, we performed additional in vivo studies of cartilage regeneration using canine large fullthickness chondrial defect model. The dogs were allocated to the experimental groups as treated chondrocyte sheets with perichondrial cell sheet group (n = 4), and chondrocyte sheets only group (n = 4). The histological and biochemical studies performed 12 weeks later as same manners as nude mouse but additional immunofluorescence study. Grossly, the size of cartilage specimen of cPCs covered group was larger than that of the control. On histological examination, the specimen of cPCs covered group showed typical characteristics of cartilage tissue. The contents of GAG and type II collagen were higher in cPCs covered group than that of the control. These studies demonstrated the potential of such CPC/cPCs constructs to support chondrogenesis in vivo. In conclusion, the method of cartilage tissue engineering using cPCs supposed to be an effective method with higher cartilage tissue gain. We suggest a new method of cartilage tissue engineering using cultured perichondrial cell sheet as a promising strategy for cartilage tissue reconstruction.

Comparison of Inpatient Medical Use between Non-specialty and Specialty Hospitals: A Study Focused on Knee Replacement Arthroplasty (전문병원과 비전문병원 입원환자의 의료이용 비교 분석: 인공관절치환술(슬관절)을 대상으로)

  • Mi-Sung Kim;Hyoung-Sun Jeong;Ki-Bong Yoo;Je-Gu Kang;Han-Sol Jang;Kwang-Soo Lee
    • Health Policy and Management
    • /
    • v.34 no.1
    • /
    • pp.78-86
    • /
    • 2024
  • Background: The purpose of this study was to determine the effectiveness of the specialty hospital system by comparing the medical use of inpatients who had artificial joint replacement surgery in specialty hospitals and non-specialty hospitals. Methods: This study utilized 2021-2022 healthcare benefit claims data provided by the Health Insurance Review and Assessment Service. The dependent variable is inpatient medical use which is measured in terms of charges per case and length of stay. The independent variable was whether the hospital was designated as a specialty hospital, and the control variables were patient-level variables (age, gender, insurer type, surgery type, and Charlson comorbidity index) and medical institution-level variables (establishment type, classification, location, number of orthopedic surgeons, and number of nurses). Results: The results of the multiple regression analysis between charges per case and whether a hospital is designated as a specialty hospital showed a statistically significant negative relationship between charges per case and whether a hospital is designated as a specialty hospital. This suggests a significant low in charges per case when a hospital is designated as a specialty hospital compared to a non-specialty hospital, indicating that there is a difference in medical use outcomes between specialty hospitals and non-specialty hospitals inpatients. Conclusion: The practical implications of this study are as follows. First, the criteria for designating specialty hospitals should be alleviated. In our study, the results show that specialty hospitals have significantly lower per-case costs than non-specialty hospitals. Despite the cost-effectiveness of specialty hospitals, the high barriers to be designated for specialty hospitals have gathered the specialty hospitals in metropolitan and major cities. To address the regional imbalance of specialty hospitals, it is believed that ease the criteria for designating specialty hospitals in non-metropolitan areas, such as introducing "semi-specialty hospitals (tentative name)," will lead to a reduction in health disparities between regions and reduce medical costs. Second, it is necessary to determine the appropriateness of the size of hospitals' medical staff. The study found that the number of orthopedic surgeons and nurses varied in charges per case. Therefore, it is believed that appropriately allocating hospital medical staff can maximize the cost-effectiveness of medical services and ultimately reduce medical costs.

Development of an Intrinsic Continuum Robot and Attitude Estimation of Its End-effector Based on a Kalman Filter (내부형 연속체로봇 개발 및 칼만필터를 이용한 말단장치 자세추정)

  • Kang, Chang Hyun;Bae, Ji Hwan;Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.361-367
    • /
    • 2015
  • This paper presents the design concept of an intrinsic continuum robot for safe man-machine interface and characteristic behaviors of its end-effector based on real experiments. Since pneumatic artificial muscles having similar antagonistic actuation to human muscles are used for main backbones of the proposed robot as well as in the role of the actuating devices, variable stiffness of robotic joints can be available in the actual environment. In order to solve the inherent shortcoming of an intrinsic continuum robot due to bending motion of the backbone materials, a Kalman filter scheme based on a triaxial accelerometer and a triaxial gyroscope was proposed to conduct an attitude estimation of the end-effector of the robot. The experimental results verified that the proposed method was effective in estimating the attitude of the end-effector of the intrinsic continuum robot.

Erythrocyte Sedimentation Rate and C-reactive Protein Values in Patients with Hip Arthroplasty (인공고관절 치환술 전후의 CRP 및 ESR의 변화)

  • Kim, Se-Dong;Lee, Dong-Chul;Park, Dong-Gu
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.218-223
    • /
    • 1992
  • Serum C-reactive protein(CRP) levels and erythrocyte sedimentation rates(ESR) were measured in 46 patients treated with uncomplicated primary hip replacements, 39 total tip replacements and 7 bipolar hip replacements. In uncomplicated primary hip replacements, ESR levels were slightly elevated preoperatively and were variable postoperatively. But CRP was normal before surgery and elevated in postoperative course, but back to normal within three weeks in most cases. Early success of hip arthroplasty is indicated by normalization of CRP within three weeks, regardless of ESR. Since ESR seems to react somewhat differently from the CRP, both methods are useful in the monitoring of complications after hip arthroplasty.

  • PDF

Microstructural Changes in Orthopaedic-Grade Ultra High Molecular Weight Polyethylene (UHMWPE) according to Gamma-Irradiation Method (감마선 조사 방법에 따른 정형외과용 초고분자량 폴리에틸렌의 미세구조 변화)

  • Lee, Kwon-Yong
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.454-458
    • /
    • 2010
  • In this study, the microstructural changes in orthopaedic-grade ultra high molecular weight polyethylene (UHMWPE) were compartively investigated for six different gamma-irradiation methods. Compared with un-irradiation (UGI), conventional gamma-irradiation in air room temperature (AR) induced statistically significant increases of relative crystallinity and percent crosslinking in UHMWPE. Vacuum environment (VR) during gamma-irradiation significantly increased the percent crosslinking in UHMWPE. Vacuum extreme low temperature (V77) during gamma-irradiation induced no significant changes in both relative crystallinity and percent crosslinking of UHMWPE but the percent crosslinking of UHMWPE in VR and V77 was significantly larger than that in AR. Post-irradiation stabilization process significantly increased the relative crystallinity of UHMWPE in V77, and it also significantly increased the percent crosslinking of UHMWPE in AR and V77.

Real Time Image Acquisition System using a Image Intensifier and Position Error Verification (영상증배관을 이용한 실시간 영상획득시스템과 위치오차검증)

  • Lee, Dong-Hoon;Kim, Nam-Hoon;Jeong, Jong-Beom
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.331-338
    • /
    • 2017
  • In this study, a portable x-ray generator was manufactured and a real-time image acquisition system was constructed using the image intensifier from the generated generator. We have developed a real - time position error verification system that can verify whether the artificial joint position is different from the initial image from the acquired image. The template image of the region of interest is extracted from the reference image using the pattern matching technique and compared with the image to be compared. As a result, It is shown that real - time position error verification is achieved by displaying the difference angle. This system is portable type, has a self-shielding facility, and the output of the irradiation device can be manufactured in a small size of 1kw and can be used as a portable type. In case of emergency patients in the non-destructive field for industrial use, It has proved effective for use in small areas such as feet.

A Three-Dimensional Finite Element Study of Interface Micromotion in a Non-Cement Total Hip stem (FEM 3차원 모델을 이용한 인공관절 대퇴 Stem 경계면의 미세운동 분석)

  • Kim, Sung-Kon;Choi, Hyung-Yun;Chae, Soo-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.61-70
    • /
    • 1996
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony inyowth and secondary long term fixation. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone stem interface. An accurate evaluation of interf'ace micromotion and stress/strain fields in the bone-implant system may be relevant for better understanding of clinical situations and improving THA design. Recently finite element method(FEM) was introduced in'orthopaedic research field due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional finite element model of proximal femur with $Multilock^{TM}$ stem of 1179 blick elements to analyse the micromotions and mechanical behaviors at the bone-stem inteface in early post-operative period for the load simulating single leg stance. The results indicates that the values of relative motion for this well fit stem were $150{\mu}m$ in maximum $82{\mu}m$ in minimum and the largest relative motion was developed in medial region of Proximal femur and in anterior-posterior direction. The motion in the proximal bone was much greater than in the distal bone and the stress pattern showed high stress concentration on the cortex near the tip of the stem. These findings indicate that the loading on the hip joint in the early postoperative situation before achieving bony ingrowth could produce large micromotion of $150{\mu}m$ and clinicaly non-cemented THA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF

Biomechanical Evaluation of Cement type hip Implants as Conditions of bone Cement and Variations of Stem Design (골시멘트 특성 및 스템 형상에 따른 시멘트 타입 인공관절의 생체역학적 평가)

  • Park, H.S.;Chun, H.J.;Youn, I.C.;Lee, M.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.212-221
    • /
    • 2008
  • The total hip replacement (THR) has been used as the most effective way to restore the function of damaged hip joint. However, various factors have caused some side effects after the THR. Unfortunately, the success of the THR have been decided only by the proficiency of surgeons so far. Hence, It is necessary to find the way to minimize the side effect caused by those factors. The purpose of this study was to suggest the definite data, which can be used to design and choose the optimal hip implant. Using finite element analysis (FEA), the biomechanical condition of bone cement was evaluated. Stress patterns were analyzed in three conditions: cement mantle, procimal femur and stem-cement contact surface. Additionally, micro-motion was analyzed in the stem-cement contact surface. The 3-D femur model was reconstructed from 2-D computerized tomography (CT) images. Raw CT images were preprocessed by image processing technique (i.e. edge detection). In this study, automated edge detection system was created by MATLAB coding for effective and rapid image processing. The 3-D femur model was reconstructed based on anatomical parameters. The stem shape was designed using that parameters. The analysis of the finite element models was performed with the variation of parameters. The biomechanical influence of each parameter was analyzed and derived optimal parameters. Moreover, the results of FE A using commercial stem model (Zimmer's V erSys) were similar to the results of stem model that was used in this study. Through the study, the improved designs and optimal factors for clinical application were suggested. We expect that the results can suggest solutions to minimize various side effects.

Deep Learning-Based Companion Animal Abnormal Behavior Detection Service Using Image and Sensor Data

  • Lee, JI-Hoon;Shin, Min-Chan;Park, Jun-Hee;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.1-9
    • /
    • 2022
  • In this paper, we propose the Deep Learning-Based Companion Animal Abnormal Behavior Detection Service, which using video and sensor data. Due to the recent increase in households with companion animals, the pet tech industry with artificial intelligence is growing in the existing food and medical-oriented companion animal market. In this study, companion animal behavior was classified and abnormal behavior was detected based on a deep learning model using various data for health management of companion animals through artificial intelligence. Video data and sensor data of companion animals are collected using CCTV and the manufactured pet wearable device, and used as input data for the model. Image data was processed by combining the YOLO(You Only Look Once) model and DeepLabCut for extracting joint coordinates to detect companion animal objects for behavior classification. Also, in order to process sensor data, GAT(Graph Attention Network), which can identify the correlation and characteristics of each sensor, was used.

A Study on the Shear Bond Strength of Resin Artificial Tooth Depending on Repair Techniques (레진 인공치아의 재부착 방법에 따른 전단결합강도에 관한 연구)

  • Kim, Ik-Jung;Lee, Jong-Hyuk;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.143-151
    • /
    • 2005
  • The purpose of this study was to evaluate the most effective method for repairing the exfoliated resin teeth. The specimens were divided into five groups according to repair method and presence of retention holes. The groups were as follows Group1 : Control group Group2 : Sprinkle method with no retention holes Group3 : Sprinkle method with retention holes Group4 : Flask method with no retention holes Group5 : Flask method with retention holes The results were as follows. 1. According to shear bond strength, the value decreased in the order of group1, group5, group3, group2, group4 and there were significant difference between, each group except between group1 and groups5, group2 and group3, group2 and group4(p < 0.05). 2. According to observations of the exfoliation surface, group2 and 4 showed more failure in the denture base resin and repair resin interface, but in group1, 3 and 5 there were more mixed failures. From the results above, there were no significant difference between repair methods without retention holes. But when comparing groups with retention holes, the flask method showed significantly improved results compared to the sprinkle method. Especially, group5 showed similar results as the control group.