• Title/Summary/Keyword: 인간 동작 인식

Search Result 114, Processing Time 0.021 seconds

3D Game Control using Gesture Recognition (동작 인식기를 이용한 3D 게임 제어)

  • Lee, Jae-Ho;Park, Chang-Joon;Lee, In-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1348-1353
    • /
    • 2006
  • 본 논문은 3 차원 게임 제어를 위한 인간의 동작인식에 대하여 기술하고 있다. 사용자의 편의성을 위하여 게임에 직관적으로 적용할 수 있는 인간의 동작들을 마커프리 모션 캡쳐 장비를 이용하여 취득하고, 이를 실시간으로 인식하는 동작 인식 시스템을 개발하였다. 또한, 개발된 동작인식기를 이용한 3차원 게임으로의 응용시스템의 접근 방식에 대하여 기술하고 있다. 개발된 동작 인식기는 LDA 방식에 기반을 둔 확률적 접근 방식으로 실시간으로 빠르고 정확하게 응용 시스템에 필요한 인간의 동작을 구별할 수 있도록 설계되었다. 개발된 시스템에서는 인식된 결과를 실시간으로 실제 어플리케이션에 전달하여 그 결과를 직접 사용자가 판단하여 다음 동작을 수행 할 수 있도록 되어 있다. 본 논문은, 이러한 실제 시스템의 개발을 통하여, 3 차원 인간 동작의 간단하고 유용한 활용 방법에 대한 해법을 제시하고 있다.

  • PDF

An Analysis of Human Gesture Recognition Technologies for Electronic Device Control (전자 기기 조종을 위한 인간 동작 인식 기술 분석)

  • Choi, Min-Seok;Jang, Beakcheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.91-100
    • /
    • 2014
  • In this paper, we categorize existing human gesture recognition technologies to camera-based, additional hardware-based and frequency-based technologies. Then we describe several representative techniques for each of them, emphasizing their strengths and weaknesses. We define important performance issues for human gesture recognition technologies and analyze recent technologies according to the performance issues. Our analyses show that camera-based technologies are easy to use and have high accuracy, but they have limitations on recognition ranges and need additional costs for their devices. Additional hardware-based technologies are not limited by recognition ranges and not affected by light or noise, but they have the disadvantage that human must wear or carry additional devices and need additional costs for their devices. Finally, frequency-based technologies are not limited by recognition ranges, and they do not need additional devices. However, they have not commercialized yet, and their accuracies can be deteriorated by other frequencies and signals.

Gender Recognition of Human Behavior with Neural Network Classifier (인공 신경망 분류기를 이용한 인간 행동의 성별 인식)

  • 류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.140-142
    • /
    • 2000
  • 인간과 기계가 효과적인 상호작용을 하기 위해서는 컴퓨터 시스템이 인간의 행동을 인식할 수 있어야 한다. 본 연구에서는 인공 신경망을 사용하여 컴퓨터 시스템이 인간의 움직임을 관찰한 후 행위자의 성별을 인식하도록 하는 시스템을 구현하였다. 두 가지 감정상태(보통상태, 화난 상태) 하에서 일어난 인간의 세 가지 동작(문 두드리기, 손 흔들기, 물건 들어올리기)을 대상으로 하여 인간 동작 데이터를 통해 만들어진 학습 데이터를 통해 98.0%의 인식률을 보일 때까지 학습시키고 나서, 이전에 사용하지 않았던 새로운 데이터에 대해 얼마나 설별을 잘 구별해 내는지 실험하였다. 동작이 일어나는 동안 행위자의 몸 여섯 군데에서 속도 데이터를 얻어내서 신경망의 입력값으로 사용하였다. 그 결과 최저 62.3%이상 최고 94.3%까지 인간 성별을 구분해 낼 수 있었고 이는 같은 데이터에 대해서 사람을 통해 실험한 것보다 훨씬 나은 것이다.

  • PDF

Gesture Recognition and Motion Evaluation Using Appearance Information of Pose in Parametric Gesture Space (파라메트릭 제스처 공간에서 포즈의 외관 정보를 이용한 제스처 인식과 동작 평가)

  • Lee, Chil-Woo;Lee, Yong-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1035-1045
    • /
    • 2004
  • In this paper, we describe a method that can recognize gestures and evaluate the degree of the gestures from sequential gesture images by using Gesture Feature Space. The previous popular methods based on HMM and neural network have difficulties in recognizing the degree of gesture even though it can classify gesture into some kinds. However, our proposed method can recognize not only posture but also the degree information of the gestures, such as speed and magnitude by calculating distance among the position vectors substituting input and model images in parametric eigenspace. This method which can be applied in various applications such as intelligent interface systems and surveillance systems is a simple and robust recognition algorithm.

  • PDF

A Bio-Inspired Modeling of Visual Information Processing for Action Recognition (생체 기반 시각정보처리 동작인식 모델링)

  • Kim, JinOk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.299-308
    • /
    • 2014
  • Various literatures related computing of information processing have been recently shown the researches inspired from the remarkably excellent human capabilities which recognize and categorize very complex visual patterns such as body motions and facial expressions. Applied from human's outstanding ability of perception, the classification function of visual sequences without context information is specially crucial task for computer vision to understand both the coding and the retrieval of spatio-temporal patterns. This paper presents a biological process based action recognition model of computer vision, which is inspired from visual information processing of human brain for action recognition of visual sequences. Proposed model employs the structure of neural fields of bio-inspired visual perception on detecting motion sequences and discriminating visual patterns in human brain. Experimental results show that proposed recognition model takes not only into account several biological properties of visual information processing, but also is tolerant of time-warping. Furthermore, the model allows robust temporal evolution of classification compared to researches of action recognition. Presented model contributes to implement bio-inspired visual processing system such as intelligent robot agent, etc.

Gesture Recognition for Natural Human-Robot Interaction (인간-로봇 상호작용을 위한 제스처 인식 기술)

  • Kim, K.K.;Kim, H.J.;Cho, S.H.;Lee, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.20 no.2 s.92
    • /
    • pp.14-20
    • /
    • 2005
  • 인간과 로봇과의 자연스러운 상호작용을 위하여 시각을 기반으로 한 사용자 의도 및 행위 인식에 대한 연구가 활발히 진행되고 있다. 제스처 인식은 시각을 기반으로 한 인식 분야에서 핵심 기술 분야로 연구되어 왔으며 최근에는 로봇이 인간에게 자연스러운 서비스를 제공해 주거나 로봇의 동작을 제어하기 위해 연구되고 있는 분야이다. 본 고에서는 기존에 제어된 제스처 인식 기술과 최근 인간-로봇의 상호작용을 위한 제스처인식 기술에 대하여 알아본다.

Bio-signal Data Augumentation Technique for CNN based Human Activity Recognition (CNN 기반 인간 동작 인식을 위한 생체신호 데이터의 증강 기법)

  • Gerelbat BatGerel;Chun-Ki Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.90-96
    • /
    • 2023
  • Securing large amounts of training data in deep learning neural networks, including convolutional neural networks, is of importance for avoiding overfitting phenomenon or for the excellent performance. However, securing labeled training data in deep learning neural networks is very limited in reality. To overcome this, several augmentation methods have been proposed in the literature to generate an additional large amount of training data through transformation or manipulation of the already acquired traing data. However, unlike training data such as images and texts, it is barely to find an augmentation method in the literature that additionally generates bio-signal training data for convolutional neural network based human activity recognition. Thus, this study proposes a simple but effective augmentation method of bio-signal training data for convolutional neural network based human activity recognition. The usefulness of the proposed augmentation method is validated by showing that human activity is recognized with high accuracy by convolutional neural network trained with its augmented bio-signal training data.

Activity Data Modeling and Visualization Method for Human Life Activity Recognition (인간의 일상동작 인식을 위한 동작 데이터 모델링과 가시화 기법)

  • Choi, Jung-In;Yong, Hwan-Seung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.1059-1066
    • /
    • 2012
  • With the development of Smartphone, Smartphone contains diverse functions including many sensors that can describe users' state. So there has been increased studies rapidly about activity recognition and life pattern recognition with Smartphone sensors. This research suggest modeling of the activity data to classify extracted data in existing activity recognition study. Activity data is divided into two parts: Physical activity and Logical Activity. In this paper, activity data modeling is theoretical analysis. We classified the basic activity(walking, standing, sitting, lying) as physical activity and the other activities including object, target and place as logical activity. After that we suggested a method of visualizing modeling data for users. Our approach will contribute to generalize human's life by modeling activity data. Also it can contribute to visualize user's activity data for existing activity recognition study.

A Study Context Aware Middle for Decision of Human Behavior Pattern (인간 행동패턴 결정을 위한 상황인식 미들웨어에 대한 연구)

  • 최순용;최종화;신동일;신동규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.538-540
    • /
    • 2004
  • 이 논문에서 제안된 인간행동패턴 결정을 위한 상황인식 미들웨어는 Intelligent Home환경에서 인간과 Home환경과의 지능적인 Agent로써의 역할을 담당한다. 우리는 제시된 논문에서 인간행동패턴 결정을 위한 상황인식 미들웨어의 아키텍처를 제안하고 상황인식 미들웨어 내에서 동작하는 인간행동패턴 학습 및 결정 프로세서에 대한 구조와 구현내용에 대한 설명을 한다. 인간행동패턴을 결정하기 위한 기본 컨텍스트들을 환경 컨텍스트와 생체 컨텍스트로 크게 두 그룹으로 분리하였고 각 그룹은 세 개의 컨텍스트를 포함하고 있다. 환경과 생체로 나뉘어진 총 6개의 컨텍스트들을 정의하고 그 구성에 대하여 설명한다. 또한 컨텍스트는 9단계로 정규화 되어 상황인식 미들웨어에서의 다음 단계인 인간행동패턴 학습 및 결정 프로세서로 정규화 된 값을 전달된다. 인간행동패턴 학습 및 결정 프로세서에서는 패턴인식에 대한 세부사항을 설명한다.

  • PDF

A Study on the Gesture Recognition Based on the Particle Filter Using CONDENSATION Algorithm (CONDENSATION 알고리즘을 이용한 입자필터 기반 동작 인식 연구)

  • Lee, Yang-Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.584-591
    • /
    • 2007
  • The recognition of human gestures in image sequences is an important and challenging problem that enables a host of human-computer interaction applications. This paper describes a gesture recognition algorithm based on the particle filters, namely CONDENSATION. The particle filter is more efficient than any other tracking algorithm because the tracking mechanism follows Bayesian estimation rule of conditional probability propagation. We used two models for the evaluation of particle filter and apply the MAILAB for the preprocessing of the image sequence. But we implement the particle filter using the C++ to get the high speed processing. In the experimental results, it is demonstrated that the proposed algorithm prove to be robust in the cluttered environment.