본 논문은 3 차원 게임 제어를 위한 인간의 동작인식에 대하여 기술하고 있다. 사용자의 편의성을 위하여 게임에 직관적으로 적용할 수 있는 인간의 동작들을 마커프리 모션 캡쳐 장비를 이용하여 취득하고, 이를 실시간으로 인식하는 동작 인식 시스템을 개발하였다. 또한, 개발된 동작인식기를 이용한 3차원 게임으로의 응용시스템의 접근 방식에 대하여 기술하고 있다. 개발된 동작 인식기는 LDA 방식에 기반을 둔 확률적 접근 방식으로 실시간으로 빠르고 정확하게 응용 시스템에 필요한 인간의 동작을 구별할 수 있도록 설계되었다. 개발된 시스템에서는 인식된 결과를 실시간으로 실제 어플리케이션에 전달하여 그 결과를 직접 사용자가 판단하여 다음 동작을 수행 할 수 있도록 되어 있다. 본 논문은, 이러한 실제 시스템의 개발을 통하여, 3 차원 인간 동작의 간단하고 유용한 활용 방법에 대한 해법을 제시하고 있다.
본 논문에서 우리는 인간 동작 인식 기술을 카메라 기반, 추가적인 하드웨어 기반, 그리고 주파수 기반 기술들로 분류한다. 각 기술 항목에 대한 대표적인 기술사례들을 설명하고, 그들의 장점과 단점을 기술한다. 인간 동작 인식 기술에 대한 중요한 성능 이슈 항목을 정의하고, 소개된 인간 동작 인식 기술들을 정의된 성능 이슈 항목에 따라 분석한다. 분석 결과 카메라 기반 인간 동작 인식 기술들은 공통적으로 손쉽게 사용할 수 있고, 높은 정확도로 동작을 인식할 수 있지만, 비용적, 인지 범위 등의 단점이 있다. 이에 비해 추가 하드웨어 기반 동작 인식 기술들은 공간의 제약, 빛이나 소음 등의 영향을 받지 않거나 최소화하였지만, 사용자가 직접 착용을 해야 하는 단점을 가진다. 최근에는 이러한 문제점을 보완하고자 주파수 기반 동작 인식 기술들이 연구 및 개발 중에 있다. 이들은 공간의 제약을 줄이고, 추가적 장비 없이 쉽게 동작인식을 할 수 있지만 아직 상용화 되지 않은 초기 연구 단계이며, 다른 신호나 주파수가 정확도에 영향을 줄 수 있다는 단점이 있다.
인간과 기계가 효과적인 상호작용을 하기 위해서는 컴퓨터 시스템이 인간의 행동을 인식할 수 있어야 한다. 본 연구에서는 인공 신경망을 사용하여 컴퓨터 시스템이 인간의 움직임을 관찰한 후 행위자의 성별을 인식하도록 하는 시스템을 구현하였다. 두 가지 감정상태(보통상태, 화난 상태) 하에서 일어난 인간의 세 가지 동작(문 두드리기, 손 흔들기, 물건 들어올리기)을 대상으로 하여 인간 동작 데이터를 통해 만들어진 학습 데이터를 통해 98.0%의 인식률을 보일 때까지 학습시키고 나서, 이전에 사용하지 않았던 새로운 데이터에 대해 얼마나 설별을 잘 구별해 내는지 실험하였다. 동작이 일어나는 동안 행위자의 몸 여섯 군데에서 속도 데이터를 얻어내서 신경망의 입력값으로 사용하였다. 그 결과 최저 62.3%이상 최고 94.3%까지 인간 성별을 구분해 낼 수 있었고 이는 같은 데이터에 대해서 사람을 통해 실험한 것보다 훨씬 나은 것이다.
본 논문에서는 저차원 제스처 특징 공간에서 연속적인 인간의 제스처 형상을 이용하여 제스처를 인식하고 동작을 구체적으로 평가하는 방법에 대해 소개한다. 기존의 HMM, 뉴럴 넷을 이용한 제스처 인식방법은 주로 인간의 동작 패턴을 구분할 수 있지만 동작의 크기 정보를 이용하기엔 어려움이 있다. 여기서 제안한 방법은 연속적으로 촬영된 인간의 제스처 영상들을 파라메트릭 고유공간이라는 저차원 공간으로 표현하여 모델과 입력 영상간의 거리 계산으로써 포즈뿐만 아니라 동작에 관한 빠르기나 크기와 같은 구체적인 정보를 인식할 수 있다. 이 방법은 단순한 처리와 비교적 안정적인 인식 알고리즘으로 지적 인터페이스 시스템이나 감시 장비와 같은 여러 응용 시스템에 적용 될 수 있다.
신체 동작, 얼굴 표정과 같이 아주 복잡한 생체 패턴을 인식하고 분류하는 인간의 능력을 모방한 정보처리 컴퓨팅 관련 연구가 최근 다수 등장하고 있다. 특히 컴퓨터비전 분야에서는 인간의 뛰어난 인지 능력 중 상황정보 없이 시각시퀀스에서 동작을 분류하는 기능을 통해 시공간적 패턴 코딩과 빠른 인식 방법을 이해하고자 한다. 본 연구는 비디오 시퀀스상의 동작인식에 생물학적 시각인지과정의 영향을 받은 생체 기반 컴퓨터비전 모델을 제시하였다. 제안 모델은 이미지 시퀀스에서 동작을 검출하고 시각 패턴을 판별하는 데 생체 시각처리과정의 신경망 구조 단계를 반영하였다. 실험을 통해 생체 기반 동작인식 모델이 인간 시각인지 처리의 여러 가지 속성을 고려했을 뿐 아니라 기존 동작인식시스템에 비해 시간 정합성이 뛰어나며 시간 변화에 강건한 분류 능력을 보임을 알 수 있다. 제안 모델은 지능형 로봇 에이전트와 같은 생체 기반 시각정보처리 시스템 구축에 기여할 수 있다.
인간과 로봇과의 자연스러운 상호작용을 위하여 시각을 기반으로 한 사용자 의도 및 행위 인식에 대한 연구가 활발히 진행되고 있다. 제스처 인식은 시각을 기반으로 한 인식 분야에서 핵심 기술 분야로 연구되어 왔으며 최근에는 로봇이 인간에게 자연스러운 서비스를 제공해 주거나 로봇의 동작을 제어하기 위해 연구되고 있는 분야이다. 본 고에서는 기존에 제어된 제스처 인식 기술과 최근 인간-로봇의 상호작용을 위한 제스처인식 기술에 대하여 알아본다.
합성곱 신경망을 비롯하여 딥러닝 신경망의 학습에서 많은 양의 훈련데이터의 확보는 과적합 현상을 피하고 우수한 성능을 가지기 위해서 매우 중요하다. 하지만, 딥러닝 신경망에서의 레이블화된 훈련데이터의 확보는 실제로는 매우 제한적이다. 이를 극복하기 위해, 이미 획득한 훈련데이터를 변형, 조작 등으로 추가로 훈련데이터를 생성하는 여러 증강 방법이 제안되었다. 하지만, 이미지, 문자 등의 훈련데이터와 달리, 인간 동작 인식을 행하는 합성곱 신경망의 생체신호 훈련데이터를 추가로 생성하는 증강 방법은 연구 문헌에서 찾아보기 어렵다. 본 연구에서는 합성곱 신경망에 기반한 인간 동작 인식을 위한 생체신호 훈련데이터를 생성하는 간편하지만, 효과적인 증강 방법을 제안한다. 본 연구의 제안된 증강 방법의 유용성은 추가로 생성된 생체신호 훈련데이터로 학습하여 합성곱 신경망이 인간 동작을 높은 정확도로 인식하는 것을 보임으로써 검증하였다.
오늘날 스마트폰의 발전으로 스마트폰 내장 센서를 통해 사용자의 개인 정보를 쉽게 파악 할 수 있고 원한다면 사용자의 위치를 실시간으로 알아낼 수 있다. 그리하여 센서를 통해 추출된 데이터를 통해 동작인식과 생활 패턴 인식에 관한 연구가 급증하고 있다. 본 논문에서는 기존의 동작 인식 연구에서 추출되는 데이터를 정형화하기 위해 동작 데이터를 모델링하였다. 본 논문의 일상 동작 모델링은 이론적 분석이다. 동작을 크게 두 가지로 분류시켜 가속도 센서만으로 인식 가능한 기본 동작을 물리적 동작으로 정의하고 그 외 목적과 대상, 장소를 포함하는 모든 동작을 논리적 동작으로 분류시켰다. 모델링 된 데이터를 기반으로 각 동작의 특성에 맞게 가시화 하는 방안을 제안하였다. 본 연구를 통해 인간의 일상생활을 동작별로 간편하게 표준화 할 수 있고 기존의 동작 인식 연구에서 추출되는 동작 데이터를 사용자의 요구에 따라 가시화 할 수 있다.
이 논문에서 제안된 인간행동패턴 결정을 위한 상황인식 미들웨어는 Intelligent Home환경에서 인간과 Home환경과의 지능적인 Agent로써의 역할을 담당한다. 우리는 제시된 논문에서 인간행동패턴 결정을 위한 상황인식 미들웨어의 아키텍처를 제안하고 상황인식 미들웨어 내에서 동작하는 인간행동패턴 학습 및 결정 프로세서에 대한 구조와 구현내용에 대한 설명을 한다. 인간행동패턴을 결정하기 위한 기본 컨텍스트들을 환경 컨텍스트와 생체 컨텍스트로 크게 두 그룹으로 분리하였고 각 그룹은 세 개의 컨텍스트를 포함하고 있다. 환경과 생체로 나뉘어진 총 6개의 컨텍스트들을 정의하고 그 구성에 대하여 설명한다. 또한 컨텍스트는 9단계로 정규화 되어 상황인식 미들웨어에서의 다음 단계인 인간행동패턴 학습 및 결정 프로세서로 정규화 된 값을 전달된다. 인간행동패턴 학습 및 결정 프로세서에서는 패턴인식에 대한 세부사항을 설명한다.
연속되는 이미지 중에서 인간의 동작을 인식하는 것은 인간과 컴퓨터의 상호 작용에서 매우 중요하고 도전할 분야이다. 본 논문에서는 CONDENSATION 알고리즘을 이용하여 입자 필터(particle filter)에 기반한 동작 인식 알고리즘을 제안한다. 입자 필터는 조건 확률 전파 모델(Conditional Density Propagation)인 베이시안(Bayesian) 추정 규칙을 적용하는 추적구조를 갖고 있기 때문에 일반적으로 기존 추적 알고리즘보다 뛰어난 성능을 갖는 경향이 있다. 본 논문에서는 알고리즘의 성능 평가를 위해서 두 개의 동작 모델을 가정하였고, 영상에 대한 전처리를 위해서는 MATLAB를 이용하였으며 입자필터는 고속 처리를 위하여 C++로 구현하였다. 두 개의 동작 실험 결과를 통해, 동작 인식 입자 필터가 근접한 동작 환경 속에서 강인한 추적 성능을 나타냄을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.