• Title/Summary/Keyword: 인간형 로봇 팔

Search Result 15, Processing Time 0.018 seconds

Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra (등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석)

  • Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.

Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction (7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘)

  • Kim, Young-Loul;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

Human-like Arm Movement Planning for Humanoid Robots Using Motion Capture Database (모션캡쳐 데이터베이스를 이용한 인간형 로봇의 인간다운 팔 움직임 계획)

  • Kim, Seung-Su;Kim, Chang-Hwan;Park, Jong-Hyeon;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.188-196
    • /
    • 2006
  • During the communication and interaction with a human using motions or gestures, a humanoid robot needs not only to look like a human but also to behave like a human to make sure the meanings of the motions or gestures. Among various human-like behaviors, arm motions of the humanoid robot are essential for the communication with people through motions. In this work, a mathematical representation for characterizing human arm motions is first proposed. The human arm motions are characterized by the elbow elevation angle which is determined using the position and orientation of human hands. That representation is mathematically obtained using an approximation tool, Response Surface Method (RSM). Then a method to generate human-like arm motions in real time using the proposed representation is presented. The proposed method was evaluated to generate human-like arm motions when the humanoid robot was asked to move its arms from a point to another point including the rotation of its hand. The example motion was performed using the KIST humanoid robot, MAHRU.

  • PDF

A Study on Motion Control of the Pet-Robot using Voice-Recognition (음성인식을 이용한 반려 로봇의 모션제어에 대한 연구)

  • Ye-Jin, Cho;Hyun-Seok, Kim;Tae-Sung, Bae;Su-Haeng, Lee;Jin-Hyean, Kim;Jae-Wook, Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1089-1094
    • /
    • 2022
  • In this paper, a human coexistence-type companion robot that can communicate with people in daily life and alleviate the gap in care personnel was studied. Based on the voice recognition module, servo motor, and Arduino board, a companion robot equipped with a robot arm control function using voice recognition, a position movement function using RC cars, and a voice recognition function was tested and manufactured. As a result of the experiment, the speech recognition experiment according to distance showed the optimal recognition rate at a distance of 5 to 30 cm, and the speech recognition experiment according to gender showed a higher recognition rate in the first tone, monotonous tone. Through the evaluation results of these motion experiments, it was confirmed that a companion robot could be made.

A Study on Design of Smart Home Service Robot McBot II (스마트 홈 서비스 로봇 맥봇II의 설계에 관한 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1824-1832
    • /
    • 2011
  • In this paper, a smart home service robot McBot II is newly developed in much more practical and intelligent system than McBot I which we had developed a few years ago. Thus far, vacuum-cleaners have lightened the burden of household chores but the operational labor that vacuum-cleaners entail has been very severe. Recently, a cleaning robot was commercialized to solve but it also was not successful because it still had the problem of mess-cleanup, which pertained to the clean-up of large trash and the arrangement of newspapers, clothes, etc. Hence, we develop a new home mess-cleanup robot McBot II to completely overcome this problem on real environments. The mechanical design and the basic control of McBot II, which performs mess-cleanup function etc. in house, is actually focused in this paper. McBot II is mechanically modeled in the same method that the human works in door by using the waist and the hands. The big-ranged vertical lift and the shoulder joints to be able to forward move are mechanically designed for the operating function as the human's waist when the robot works. The mobility of McBot II is designed in the holonomic mobile robot for the collision avoidance of obstacle and the high speed navigation on the small area in door. Finally, good performance of McBot II, which has been optimally desinged, is confirmed through the experimental results for the control of the robotic body, mobility, arms and hands in this paper.