• Title/Summary/Keyword: 인간배아줄기세포

Search Result 60, Processing Time 0.029 seconds

New Isolation Technique and Culture System for Clinical Applications of Human Amniotic Epithelial Stem Cells (인간태반양막유래 상피줄기세포의 임상적용을 위한 새로운 세포분리 및 배양 기술)

  • Woo, Sang-Kyu;Jo, Jung-Yoon;Shin, Il-Seob;Kang, Sung-Keun;Ra, Jeong-Chan
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.271-280
    • /
    • 2009
  • Human placenta is abundant source of adult stem cells. Especially, amniotic epithelial cells have stem cell characteristics, expressing surface markers normally present on embryonic stem cells and germ cells. However, culturing and expanding amniotic epithelial cells in vitro without feeder cells are difficult due to endogenous characteristics of epithelial cells. In the present study, amniotic epithelial cells are isolated and proliferated in several passages by applying dithiothreitol and a Rho-associated kinase inhibitor in culture media. The cultured amniotic epithelial cells showed the epithelial and stem cell characteristics. In conclusion, human placenta-derived amniotic epithelial stem cells can be a major source of stem cells for medical treatment of various diseases without any controversial issues.

  • PDF

Clinical Effect through Histological Characteristics of Focal Ischemia Region (뇌허혈성 부위의 조직학적 특성을 통한 임상적 영향)

  • Lee, Tae-Hoon
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.39-43
    • /
    • 2019
  • Mouse embryonic stem cell could show an substitutional materials of cells of neuron differentiation, positively increasing their effectiveness in the treatment of nervous symptom. We examined that mouse embryonic stem cells (mESCs) can be induced to undergo neuronal differentiation. After neuronal induction, the phenotype of mESCs changed towards neuronal morphology and mESCs were injected into the lateral ventricle of the experimental animal brain. Transplanted cells migrated to various parts of the brain and ischemic brain injury by middle cerebral artery occlusion (MCAO) increased their migration to the injured cortex. Intracerebral grafting of mESCs mostly improve sensory and motor nervous system of neurological injury in focal cerebral rats.